Answer :

Given the equation:

[tex]\[ x + \frac{1}{x} = 7 \][/tex]

We need to find the value of [tex]\( x^2 + \frac{1}{x^2} \)[/tex].

Let's start by squaring both sides of the given equation:

[tex]\[ \left( x + \frac{1}{x} \right)^2 = 7^2 \][/tex]

Expanding the left side:

[tex]\[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 \cdot \frac{x}{x} + \frac{1}{x^2} \][/tex]

[tex]\[ x^2 + 2 + \frac{1}{x^2} = 49 \][/tex]

Next, we isolate [tex]\( x^2 + \frac{1}{x^2} \)[/tex]:

[tex]\[ x^2 + \frac{1}{x^2} = 49 - 2 \][/tex]

[tex]\[ x^2 + \frac{1}{x^2} = 47 \][/tex]

Therefore, the value of [tex]\( x^2 + \frac{1}{x^2} \)[/tex] is

[tex]\[ \boxed{47} \][/tex]