Answer :
In order to determine the value of [tex]\( y \)[/tex] given by the expression [tex]\( y = 152^\circ \leftarrow \frac{A}{70} \)[/tex], we need to follow the steps outlined below step-by-step.
### Step-by-step Solution:
1. Understand the Components:
- We have an angle of [tex]\( 152^\circ \)[/tex].
- [tex]\( A \)[/tex] is a constant factor which we do not currently know.
- The expression [tex]\( 152^\circ \leftarrow \)[/tex] indicates that 152 degrees is somehow being used in a relationship with a fraction [tex]\( \frac{A}{70} \)[/tex].
2. Set Up the Relationship:
- The relationship given can be interpreted as
[tex]\[ y = 152^\circ \times \left(\frac{A}{70}\right) \][/tex]
3. Express [tex]\( y \)[/tex] in Terms of Known Quantities:
- Substitute the angle into the equation:
[tex]\[ y = 152 \left( \frac{A}{70} \right) \][/tex]
4. Simplify the Expression:
- The formula shows a clear proportional relationship between [tex]\( y \)[/tex] and [tex]\( A \)[/tex]:
[tex]\[ y = \frac{152A}{70} \][/tex]
5. Isolate [tex]\( y \)[/tex]:
- Further simplify the fraction:
[tex]\[ y = \frac{152}{70} \times A \][/tex]
- Simplifying the fraction [tex]\( \frac{152}{70} \)[/tex]:
[tex]\[ y = \left(\frac{152}{70}\right)A \Rightarrow y = \left(\frac{76}{35}\right)A \][/tex]
### Conclusion:
Given the expression [tex]\( y = 152 \times \left(\frac{A}{70}\right) \)[/tex], the value of [tex]\( y \)[/tex] depends directly on the variable [tex]\( A \)[/tex]. The simplified proportional relationship is:
[tex]\[ y = \left(\frac{76 A}{35}\right) \][/tex]
Hence, the value of [tex]\( y \)[/tex] is computed by multiplying [tex]\( A \)[/tex] by the fraction [tex]\( \frac{76}{35} \)[/tex]. The exact numerical value of [tex]\( y \)[/tex] will depend on the specific value of [tex]\( A \)[/tex].
### Step-by-step Solution:
1. Understand the Components:
- We have an angle of [tex]\( 152^\circ \)[/tex].
- [tex]\( A \)[/tex] is a constant factor which we do not currently know.
- The expression [tex]\( 152^\circ \leftarrow \)[/tex] indicates that 152 degrees is somehow being used in a relationship with a fraction [tex]\( \frac{A}{70} \)[/tex].
2. Set Up the Relationship:
- The relationship given can be interpreted as
[tex]\[ y = 152^\circ \times \left(\frac{A}{70}\right) \][/tex]
3. Express [tex]\( y \)[/tex] in Terms of Known Quantities:
- Substitute the angle into the equation:
[tex]\[ y = 152 \left( \frac{A}{70} \right) \][/tex]
4. Simplify the Expression:
- The formula shows a clear proportional relationship between [tex]\( y \)[/tex] and [tex]\( A \)[/tex]:
[tex]\[ y = \frac{152A}{70} \][/tex]
5. Isolate [tex]\( y \)[/tex]:
- Further simplify the fraction:
[tex]\[ y = \frac{152}{70} \times A \][/tex]
- Simplifying the fraction [tex]\( \frac{152}{70} \)[/tex]:
[tex]\[ y = \left(\frac{152}{70}\right)A \Rightarrow y = \left(\frac{76}{35}\right)A \][/tex]
### Conclusion:
Given the expression [tex]\( y = 152 \times \left(\frac{A}{70}\right) \)[/tex], the value of [tex]\( y \)[/tex] depends directly on the variable [tex]\( A \)[/tex]. The simplified proportional relationship is:
[tex]\[ y = \left(\frac{76 A}{35}\right) \][/tex]
Hence, the value of [tex]\( y \)[/tex] is computed by multiplying [tex]\( A \)[/tex] by the fraction [tex]\( \frac{76}{35} \)[/tex]. The exact numerical value of [tex]\( y \)[/tex] will depend on the specific value of [tex]\( A \)[/tex].