Convict. Find the value of

[tex]\[ y = 152^{\circ} \leftarrow \frac{A}{70} \][/tex]

Rewrite to make sense:

Find the value of [tex]\[ y \][/tex] in the equation [tex]\[ y = 152^{\circ} \leftarrow \frac{A}{70} \][/tex]



Answer :

In order to determine the value of [tex]\( y \)[/tex] given by the expression [tex]\( y = 152^\circ \leftarrow \frac{A}{70} \)[/tex], we need to follow the steps outlined below step-by-step.

### Step-by-step Solution:

1. Understand the Components:
- We have an angle of [tex]\( 152^\circ \)[/tex].
- [tex]\( A \)[/tex] is a constant factor which we do not currently know.
- The expression [tex]\( 152^\circ \leftarrow \)[/tex] indicates that 152 degrees is somehow being used in a relationship with a fraction [tex]\( \frac{A}{70} \)[/tex].

2. Set Up the Relationship:
- The relationship given can be interpreted as
[tex]\[ y = 152^\circ \times \left(\frac{A}{70}\right) \][/tex]

3. Express [tex]\( y \)[/tex] in Terms of Known Quantities:
- Substitute the angle into the equation:
[tex]\[ y = 152 \left( \frac{A}{70} \right) \][/tex]

4. Simplify the Expression:
- The formula shows a clear proportional relationship between [tex]\( y \)[/tex] and [tex]\( A \)[/tex]:
[tex]\[ y = \frac{152A}{70} \][/tex]

5. Isolate [tex]\( y \)[/tex]:
- Further simplify the fraction:
[tex]\[ y = \frac{152}{70} \times A \][/tex]
- Simplifying the fraction [tex]\( \frac{152}{70} \)[/tex]:
[tex]\[ y = \left(\frac{152}{70}\right)A \Rightarrow y = \left(\frac{76}{35}\right)A \][/tex]

### Conclusion:

Given the expression [tex]\( y = 152 \times \left(\frac{A}{70}\right) \)[/tex], the value of [tex]\( y \)[/tex] depends directly on the variable [tex]\( A \)[/tex]. The simplified proportional relationship is:

[tex]\[ y = \left(\frac{76 A}{35}\right) \][/tex]

Hence, the value of [tex]\( y \)[/tex] is computed by multiplying [tex]\( A \)[/tex] by the fraction [tex]\( \frac{76}{35} \)[/tex]. The exact numerical value of [tex]\( y \)[/tex] will depend on the specific value of [tex]\( A \)[/tex].