Task 2. Write the following equations in statement form.

1. [tex] x + 2 = 5 [/tex]
Adding 2 to [tex] x [/tex] gives 5.

2. [tex] x - 2 = 7 [/tex]
Subtracting 2 from [tex] x [/tex] gives 7.

3. [tex] 2x + 3 = 7 [/tex]
Adding 3 to twice [tex] x [/tex] gives 7.

4. [tex] 2x - 3 = 4 [/tex]
Subtracting 3 from twice [tex] x [/tex] gives 4.

5. [tex] 2y = 16 [/tex]
Twice [tex] y [/tex] gives 16.

6. [tex] \frac{n}{3} - 4 = 8 [/tex]
Subtracting 4 from one-third of [tex] n [/tex] gives 8.

7. [tex] 6y = 54 [/tex]
Six times [tex] y [/tex] gives 54.

8. [tex] 6n + 3 = 10 [/tex]
Adding 3 to six times [tex] n [/tex] gives 10.

9. [tex] 7p - 4 = 12 [/tex]
Subtracting 4 from seven times [tex] p [/tex] gives 12.

10. [tex] z + 6 = 16 [/tex]
Adding 6 to [tex] z [/tex] gives 16.



Answer :

Sure, let's rewrite each of these equations in statement form. Here's the step-by-step explanation:

1. Equation: [tex]\( x - 2 = 7 \)[/tex]
Statement: Subtracting 2 from [tex]\( x \)[/tex] gives 7.

2. Equation: [tex]\( x + 2 = 5 \)[/tex]
Statement: Adding 2 to [tex]\( x \)[/tex] gives 5.

3. Equation: [tex]\( 2x + 3 = 7 \)[/tex]
Statement: Multiplying [tex]\( x \)[/tex] by 2 and adding 3 gives 7.

4. Equation: [tex]\( 2x - 3 = 4 \)[/tex]
Statement: Multiplying [tex]\( x \)[/tex] by 2 and subtracting 3 gives 4.

5. Equation: [tex]\( 2y = 16 \)[/tex]
Statement: Multiplying [tex]\( y \)[/tex] by 2 gives 16.

6. Equation: [tex]\( \frac{n}{3} - 4 = 8 \)[/tex]
Statement: Dividing [tex]\( n \)[/tex] by 3 and subtracting 4 gives 8.

7. Equation: [tex]\( 6y = 54 \)[/tex]
Statement: Multiplying [tex]\( y \)[/tex] by 6 gives 54.

8. Equation: [tex]\( 6n + 3 = 10 \)[/tex]
Statement: Multiplying [tex]\( n \)[/tex] by 6 and adding 3 gives 10.

9. Equation: [tex]\( 7p - 4 = 12 \)[/tex]
Statement: Multiplying [tex]\( p \)[/tex] by 7 and subtracting 4 gives 12.

10. Equation: [tex]\( z + 6 = 16 \)[/tex]
Statement: Adding 6 to [tex]\( z \)[/tex] gives 16.

This matches our step-by-step conversion of equations into their corresponding statement forms.