What is the length of one of the legs of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle if the hypotenuse measures 12 inches?

A. [tex]$12 \sqrt{2}$[/tex] in.
B. 12 in.
C. 24 in.
D. [tex]$24 \sqrt{2}$[/tex] in.



Answer :

Let's solve the problem step-by-step. You are given a [tex]\(45^\circ - 45^\circ - 90^\circ\)[/tex] triangle, where the hypotenuse measures 12 inches. In a [tex]\(45^\circ - 45^\circ - 90^\circ\)[/tex] triangle, the relationship between the legs and the hypotenuse is well defined:

[tex]\[ \text{Leg} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]

Given:
[tex]\[ \text{Hypotenuse} = 12 \text{ inches} \][/tex]

Substitute the hypotenuse value into the formula:

[tex]\[ \text{Leg} = \frac{12}{\sqrt{2}} \][/tex]

Next, simplify this expression. You can multiply the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:

[tex]\[ \text{Leg} = \frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12 \sqrt{2}}{2} = 6 \sqrt{2} \][/tex]

Hence, the exact length of one leg is:

[tex]\[ 6 \sqrt{2} \text{ inches} \][/tex]

To provide a numerical approximation of this length:

[tex]\[ 6 \sqrt{2} \approx 8.48528137423857 \text{ inches} \][/tex]

Therefore, one of the legs of the triangle measures approximately [tex]\(8.485 \text{ inches}\)[/tex].