The hypotenuse of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle measures 128 cm.

What is the length of one leg of the triangle?

A. 64 cm

B. [tex]$64 \sqrt{2}$[/tex] cm

C. 128 cm

D. [tex][tex]$128 \sqrt{2}$[/tex][/tex] cm



Answer :

To determine the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle given that the hypotenuse measures 128 cm, we can follow these steps:

1. Recognize the properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle. In this type of triangle, the lengths of the legs are equal. Furthermore, the relationship between the leg length (we'll call this [tex]\(a\)[/tex]) and the hypotenuse ([tex]\(c\)[/tex]) can be derived from the Pythagorean theorem. The formula for the hypotenuse [tex]\(c\)[/tex] in terms of the leg length [tex]\(a\)[/tex] is given by:
[tex]\[ c = a\sqrt{2} \][/tex]
Given:
[tex]\[ c = 128 \text{ cm} \][/tex]

2. Rearrange the formula to solve for the leg length [tex]\(a\)[/tex]:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]

3. Substitute the known value of the hypotenuse [tex]\(c = 128\)[/tex] cm into the equation:
[tex]\[ a = \frac{128}{\sqrt{2}} \][/tex]

4. Rationalize the denominator:
[tex]\[ a = \frac{128 \sqrt{2}}{2} \][/tex]

5. Simplify the expression:
[tex]\[ a = 64 \sqrt{2} \text{ cm} \][/tex]

Thus, the length of one leg of the [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is:
[tex]\[ 64 \sqrt{2} \text{ cm} \][/tex]

Therefore, the correct choice from the given options is:
[tex]\[ \boxed{64 \sqrt{2} \text{ cm}} \][/tex]