Answer :
Certainly! Let's explore the detailed information given for the sine of [tex]\(60^\circ\)[/tex]:
1. Input: [tex]\(\frac{2}{\sqrt{3}}\)[/tex]; Output: [tex]\(60^\circ\)[/tex]
- This is an example of a numerical input that, when processed, results in an angle of [tex]\(60^\circ\)[/tex].
- Calculating [tex]\(\frac{2}{\sqrt{3}}\)[/tex] yields approximately [tex]\(1.1547005383792517\)[/tex].
- Therefore, inputting [tex]\(1.1547005383792517\)[/tex] corresponds to the angle [tex]\(60^\circ\)[/tex].
2. Input: [tex]\(60^\circ\)[/tex]; Output: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- This demonstrates the calculation of the sine of [tex]\(60^\circ\)[/tex]. The sine of [tex]\(60^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- Numerically, [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is approximately [tex]\(0.8660254037844386\)[/tex].
- Thus, inputting [tex]\(60^\circ\)[/tex] yields [tex]\(0.8660254037844386\)[/tex] as the output.
3. Input: [tex]\(60^\circ\)[/tex]; Output: [tex]\(\frac{2}{\sqrt{3}}\)[/tex]
- Here, [tex]\(60^\circ\)[/tex] is given as the input with the output value specified as [tex]\(\frac{2}{\sqrt{3}}\)[/tex].
- Given [tex]\(60^\circ\)[/tex], the calculation results in an output of [tex]\(\frac{2}{\sqrt{3}}\)[/tex], which, as calculated before, is approximately [tex]\(1.1547005383792517\)[/tex].
4. Input: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]; Output: [tex]\(60^\circ\)[/tex]
- Lastly, this configuration shows how [tex]\(\frac{\sqrt{3}}{2}\)[/tex], when inputted, results in an angle of [tex]\(60^\circ\)[/tex].
- As previously mentioned, [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is approximately [tex]\(0.8660254037844386\)[/tex].
- Hence, an input value of [tex]\(0.8660254037844386\)[/tex] corresponds to the angle [tex]\(60^\circ\)[/tex].
To summarize:
- Input [tex]\(1.1547005383792517\)[/tex] results in [tex]\(60^\circ\)[/tex].
- Input [tex]\(60^\circ\)[/tex] results in [tex]\(0.8660254037844386\)[/tex].
- Input [tex]\(60^\circ\)[/tex] also results in [tex]\(1.1547005383792517\)[/tex].
- Input [tex]\(0.8660254037844386\)[/tex] results in [tex]\(60^\circ\)[/tex].
These values correspond to the sine of [tex]\(60^\circ\)[/tex] and the various ways of representing and understanding the relationships between angles and their sine values.
1. Input: [tex]\(\frac{2}{\sqrt{3}}\)[/tex]; Output: [tex]\(60^\circ\)[/tex]
- This is an example of a numerical input that, when processed, results in an angle of [tex]\(60^\circ\)[/tex].
- Calculating [tex]\(\frac{2}{\sqrt{3}}\)[/tex] yields approximately [tex]\(1.1547005383792517\)[/tex].
- Therefore, inputting [tex]\(1.1547005383792517\)[/tex] corresponds to the angle [tex]\(60^\circ\)[/tex].
2. Input: [tex]\(60^\circ\)[/tex]; Output: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- This demonstrates the calculation of the sine of [tex]\(60^\circ\)[/tex]. The sine of [tex]\(60^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex].
- Numerically, [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is approximately [tex]\(0.8660254037844386\)[/tex].
- Thus, inputting [tex]\(60^\circ\)[/tex] yields [tex]\(0.8660254037844386\)[/tex] as the output.
3. Input: [tex]\(60^\circ\)[/tex]; Output: [tex]\(\frac{2}{\sqrt{3}}\)[/tex]
- Here, [tex]\(60^\circ\)[/tex] is given as the input with the output value specified as [tex]\(\frac{2}{\sqrt{3}}\)[/tex].
- Given [tex]\(60^\circ\)[/tex], the calculation results in an output of [tex]\(\frac{2}{\sqrt{3}}\)[/tex], which, as calculated before, is approximately [tex]\(1.1547005383792517\)[/tex].
4. Input: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]; Output: [tex]\(60^\circ\)[/tex]
- Lastly, this configuration shows how [tex]\(\frac{\sqrt{3}}{2}\)[/tex], when inputted, results in an angle of [tex]\(60^\circ\)[/tex].
- As previously mentioned, [tex]\(\frac{\sqrt{3}}{2}\)[/tex] is approximately [tex]\(0.8660254037844386\)[/tex].
- Hence, an input value of [tex]\(0.8660254037844386\)[/tex] corresponds to the angle [tex]\(60^\circ\)[/tex].
To summarize:
- Input [tex]\(1.1547005383792517\)[/tex] results in [tex]\(60^\circ\)[/tex].
- Input [tex]\(60^\circ\)[/tex] results in [tex]\(0.8660254037844386\)[/tex].
- Input [tex]\(60^\circ\)[/tex] also results in [tex]\(1.1547005383792517\)[/tex].
- Input [tex]\(0.8660254037844386\)[/tex] results in [tex]\(60^\circ\)[/tex].
These values correspond to the sine of [tex]\(60^\circ\)[/tex] and the various ways of representing and understanding the relationships between angles and their sine values.