Determine the quadratic regression equation for the following data set.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & 2 & 4 & 6 & 6 & 7 & 9 & 8 & 9 & 11 & 12 \\
\hline [tex]$y$[/tex] & 32 & 54 & 85 & 90 & 95 & 100 & 90 & 63 & 29 & 8 \\
\hline
\end{tabular}

A. [tex] y = -3.01612 x^2 + 31.6294 x - 45.8254 [/tex]
B. [tex] y = -3.01612 x^2 + 40.6817 x - 45.8254 [/tex]
C. [tex] y = -3.01612 x^2 + 31.6294 x - 56.5417 [/tex]
D. [tex] y = -3.01612 x^2 + 40.6817 x - 56.5417 [/tex]



Answer :

To determine the quadratic regression equation for the given data set, we'll find the best-fitting quadratic function of the form [tex]\( y = ax^2 + bx + c \)[/tex] that describes the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. Given the detailed steps and calculations for this problem, let's analyze the provided data and coefficients to form our regression equation.

The given data points are:
- [tex]\( x \)[/tex] values: [2, 4, 6, 6, 7, 9, 8, 9, 11, 12]
- [tex]\( y \)[/tex] values: [32, 54, 85, 90, 95, 100, 90, 63, 29, 8]

The coefficients for the quadratic regression have been determined as follows:
- [tex]\( a \approx -3.01612 \)[/tex]
- [tex]\( b \approx 40.6817 \)[/tex]
- [tex]\( c \approx -45.8254 \)[/tex]

Using these coefficients, we can write the quadratic regression equation as:
[tex]\[ y = -3.01612x^2 + 40.6817x - 45.8254 \][/tex]

This equation best fits the pattern of the data provided.

Therefore, the correct quadratic regression equation for the data set is:
[tex]\[ y = -3.01612x^2 + 40.6817x - 45.8254 \][/tex]

The correct choice among the given options is:
[tex]\[ y = -3.01612x^2 + 40.6817x - 45.8254 \][/tex]