Describe the translation.

[tex]\[ y = (x - 5)^2 + 5 \rightarrow y = (x - 0)^2 + 0 \][/tex]

A. [tex]\( T_{\ \textless \ -5,-5\ \textgreater \ } \)[/tex]
B. [tex]\( T_{\ \textless \ 5,5\ \textgreater \ } \)[/tex]
C. [tex]\( T_{\ \textless \ 5,-5\ \textgreater \ } \)[/tex]
D. [tex]\( T_{\ \textless \ -5,5\ \textgreater \ } \)[/tex]



Answer :

Sure, let's analyze the translation step-by-step.

We start with the original equation of the function:
[tex]\[ y = (x - 5)^2 + 5 \][/tex]

We are translating this function to a new equation:
[tex]\[ y = (x - 0)^2 + 0 \][/tex]
or simply:
[tex]\[ y = x^2 \][/tex]

### Understanding the Translation

The general form of a translated equation is:
[tex]\[ y = (x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] represents the vertex of the parabola.

Here, in the initial function [tex]\( y = (x - 5)^2 + 5 \)[/tex], the vertex of the parabola is at the point [tex]\((5, 5)\)[/tex].

In the translated function [tex]\( y = x^2 \)[/tex], the vertex of the parabola moves to the origin, [tex]\((0, 0)\)[/tex].

### Determining the Translation Vector

To find the translation vector, we need to determine how far and in what direction the vertex has moved:

1. Horizontal Translation:
- The original x-coordinate of the vertex is 5.
- The new x-coordinate of the vertex is 0.
- The horizontal translation is [tex]\( 0 - 5 = -5 \)[/tex].

2. Vertical Translation:
- The original y-coordinate of the vertex is 5.
- The new y-coordinate of the vertex is 0.
- The vertical translation is [tex]\( 0 - 5 = -5 \)[/tex].

Therefore, the translation moves the graph 5 units to the right (positive x-direction) and 5 units down (negative y-direction).

In vector notation, the translation can be represented as:
[tex]\[ \langle 5, -5 \rangle \][/tex]

### Selecting the Correct Option

Now, let's match this translation vector to the options provided:

A. [tex]\( T_{<-5, -5>} \)[/tex] — translates the graph left 5 units and down 5 units.
B. [tex]\( T_{<5, 5>} \)[/tex] — translates the graph right 5 units and up 5 units.
C. [tex]\( T_{<5, -5>} \)[/tex] — translates the graph right 5 units and down 5 units.
D. [tex]\( T_{<-5, 5>} \)[/tex] — translates the graph left 5 units and up 5 units.

Based on our analysis, the correct option is:
[tex]\[ \boxed{C} \][/tex]