Write the logarithm as a sum or difference of logarithms. Simplify each term as much as possible. Assume that the variables represent positive real numbers:

[tex]\[ \log_5\left(\frac{1}{5} m m^2\right) = \][/tex]

[tex]\[\square\][/tex]



Answer :

Sure, let's break down and simplify the given logarithmic expression:

[tex]\[ \log_5\left(\frac{1}{5} m m^2\right) \][/tex]

1. Combine the terms inside the logarithm:

[tex]\[ \frac{1}{5} m m^2 = \frac{1}{5} m^3 \][/tex]

Thus, the expression becomes:

[tex]\[ \log_5\left(\frac{1}{5} m^3\right) \][/tex]

2. Use properties of logarithms to separate the terms:

[tex]\[ \log_5(a \cdot b) = \log_5(a) + \log_5(b) \][/tex]

Here, [tex]\( a = \frac{1}{5} \)[/tex] and [tex]\( b = m^3 \)[/tex]:

[tex]\[ \log_5\left(\frac{1}{5} m^3\right) = \log_5\left(\frac{1}{5}\right) + \log_5(m^3) \][/tex]

3. Simplify each term individually:

- For the first term, [tex]\(\log_5\left(\frac{1}{5}\right)\)[/tex]:

[tex]\[ \frac{1}{5} = 5^{-1} \][/tex]

Thus:

[tex]\[ \log_5\left(5^{-1}\right) = -1 \cdot \log_5(5) \][/tex]

Since [tex]\(\log_5(5) = 1\)[/tex]:

[tex]\[ \log_5\left(5^{-1}\right) = -1 \][/tex]

- For the second term, [tex]\(\log_5(m^3)\)[/tex]:

[tex]\[ \log_5(m^3) = 3 \cdot \log_5(m) \][/tex]

4. Combine the simplified terms:

[tex]\[ \log_5\left(\frac{1}{5} m^3\right) = -1 + 3 \cdot \log_5(m) \][/tex]

Therefore, the simplified expression is:

[tex]\[ \boxed{-1 + 3 \cdot \log_5(m)} \][/tex]