A coin is weighted so that the probability of getting heads is [tex]\frac{2}{3}[/tex]. Suppose you toss this coin 15 times. Let [tex]X[/tex] represent the number of heads. What are the mean and standard deviation of [tex]X[/tex]?

A. [tex]\mu_X = 0.67, \sigma_X = 0.88[/tex]
B. [tex]u_X = 75, \pi_X = 2.33[/tex]
C. [tex]\mu_X = 7.5, \sigma_X = 3.33[/tex]
D. [tex]\mu_X = 10, \sigma_X = 1.8[/tex]



Answer :

To find the mean and standard deviation for the number of heads when a biased coin is tossed 15 times, we need to apply the properties of a binomial distribution.

1. Mean (μ) of X:
The mean of a binomial distribution is given by:
[tex]\[ \mu_x = n \cdot p \][/tex]
where [tex]\( n \)[/tex] is the number of trials (tosses), and [tex]\( p \)[/tex] is the probability of success (getting heads in this case).

For this problem:
- [tex]\( n = 15 \)[/tex] (number of tosses)
- [tex]\( p = \frac{2}{3} \)[/tex] (probability of getting heads)

Substituting these values into the formula, we get:
[tex]\[ \mu_x = 15 \cdot \frac{2}{3} \][/tex]
Simplifying this expression:
[tex]\[ \mu_x = 15 \cdot 0.6667 \approx 10 \][/tex]

2. Standard Deviation (σ) of X:
The standard deviation of a binomial distribution is given by:
[tex]\[ \sigma_x = \sqrt{n \cdot p \cdot (1 - p)} \][/tex]
Again, using [tex]\( n = 15 \)[/tex] and [tex]\( p = \frac{2}{3} \)[/tex]:

Substituting these values into the formula, we get:
[tex]\[ \sigma_x = \sqrt{15 \cdot \frac{2}{3} \cdot \left(1 - \frac{2}{3}\right)} \][/tex]
Simplifying inside the square root:
[tex]\[ \sigma_x = \sqrt{15 \cdot \frac{2}{3} \cdot \frac{1}{3}} \][/tex]
[tex]\[ \sigma_x = \sqrt{15 \cdot \frac{2}{9}} \][/tex]
[tex]\[ \sigma_x = \sqrt{\frac{30}{9}} \][/tex]
[tex]\[ \sigma_x = \sqrt{3.\overline{3}} \approx 1.826 \][/tex]

Based on the calculations, the mean and standard deviation for the number of heads when the coin is tossed 15 times are:
[tex]\[ \mu_x = 10, \quad \sigma_x = 1.826 \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{\mu_x = 10, \sigma_x = 1.8} \][/tex]