Solve the equation. Write the solution set with the exact values given in terms of common or natural logarithms. Also, give approximate solutions to 4 decimal places.

[tex]\[240 = 1920 e^{-0.5 x}\][/tex]

The exact solution set is:

[tex]\[x = \square\][/tex]

Approximate solution:

[tex]\[x \approx \square\][/tex]



Answer :

Sure, let's solve the equation step-by-step:

Given equation:
[tex]\[ 240 = 1920 e^{-0.5x} \][/tex]

1. Isolate the exponential term:

Divide both sides of the equation by 1920:
[tex]\[ \frac{240}{1920} = e^{-0.5x} \][/tex]
Simplify the fraction:
[tex]\[ 0.125 = e^{-0.5x} \][/tex]

2. Take the natural logarithm on both sides:

To get rid of the exponential, take the natural logarithm ([tex]\(\ln\)[/tex]) of both sides:
[tex]\[ \ln(0.125) = \ln(e^{-0.5x}) \][/tex]
Using the property [tex]\(\ln(e^y) = y\)[/tex], we have:
[tex]\[ \ln(0.125) = -0.5x \][/tex]

3. Solve for [tex]\(x\)[/tex]:

To isolate [tex]\(x\)[/tex], divide both sides by -0.5:
[tex]\[ x = \frac{\ln(0.125)}{-0.5} \][/tex]

4. Express the exact value:

Recognize that [tex]\(0.125 = \frac{1}{8}\)[/tex], and using the property of logarithms [tex]\(\ln\left(\frac{1}{a}\right) = -\ln(a)\)[/tex]:
[tex]\[ \ln(0.125) = \ln\left(\frac{1}{8}\right) = -\ln(8) \][/tex]
Substitute this back into the expression:
[tex]\[ x = \frac{-\ln(8)}{-0.5} = \frac{\ln(8)}{0.5} = 2 \ln(8) \][/tex]

5. Approximate the solution to 4 decimal places:

Using the numerical approximation of the natural logarithm, [tex]\(\ln(8) \approx 2.0794\)[/tex]:
[tex]\[ x \approx 2 \cdot 2.0794 = 4.1588 \][/tex]
Round to 4 decimal places:
[tex]\[ x \approx 4.1589 \][/tex]

So, the exact solution is:
[tex]\[ x = 2 \ln 8 \][/tex]

And the approximate solution to 4 decimal places is:
[tex]\[ x \approx 4.1589 \][/tex]

Thus, the solution set with the exact value in terms of natural logarithms and the approximate solution to 4 decimal places is:
[tex]\[ x = 2 \ln 8 \quad \text{(exact solution)} \][/tex]
[tex]\[ x \approx 4.1589 \quad \text{(approximate solution to 4 decimal places)} \][/tex]