4. Factorize the following:

(a) [tex]2ax + 6ap + bx + 3bp[/tex]

(b) [tex]xs - xk - ys + yk[/tex]

(c) [tex]6ma - nb - 3na + 2mb[/tex]

(d) [tex]2ax + by - 2ay - bx[/tex]



Answer :

Sure! Let's factorize each expression step-by-step:

### (a) [tex]\(2ax + 6ap + bx + 3bp\)[/tex]

1. Group the terms to facilitate factoring:
[tex]\[ 2ax + 6ap + bx + 3bp = (2ax + 6ap) + (bx + 3bp) \][/tex]

2. Factor out the common factors from each group:
[tex]\[ 2a(x + 3p) + b(x + 3p) \][/tex]

3. Notice that [tex]\((x + 3p)\)[/tex] is a common factor:
[tex]\[ (2a + b)(x + 3p) \][/tex]

Thus, the factorized form is:
[tex]\[ 2ax + 6ap + bx + 3bp = (2a + b)(x + 3p) \][/tex]

### (b) [tex]\(xs - xk - ys + yk\)[/tex]

1. Group the terms to facilitate factoring:
[tex]\[ xs - xk - ys + yk = (xs - xk) - (ys - yk) \][/tex]

2. Factor out the common factors from each group:
[tex]\[ x(s - k) - y(s - k) \][/tex]

3. Notice that [tex]\((s - k)\)[/tex] is a common factor:
[tex]\[ (s - k)(x - y) \][/tex]

Thus, the factorized form is:
[tex]\[ xs - xk - ys + yk = (s - k)(x - y) \][/tex]

### (c) [tex]\(6ma - nb - 3na + 2mb\)[/tex]

1. Group the terms to facilitate factoring:
[tex]\[ 6ma - 3na - nb + 2mb = (6ma - 3na) + (-nb + 2mb) \][/tex]

2. Factor out the common factors from each group:
[tex]\[ 3a(2m - n) + b(2m - n) \][/tex]

3. Notice that [tex]\((2m - n)\)[/tex] is a common factor:
[tex]\[ (3a + b)(2m - n) \][/tex]

Thus, the factorized form is:
[tex]\[ 6ma - nb - 3na + 2mb = (3a + b)(2m - n) \][/tex]

### (d) [tex]\(2ax + by - 2ay - bx\)[/tex]

1. Group the terms to facilitate factoring:
[tex]\[ 2ax - 2ay + by - bx = 2a(x - y) + b(y - x) \][/tex]

2. Rewriting the second term to show the common factor:
[tex]\[ 2a(x - y) - b(x - y) \][/tex]

3. Notice that [tex]\((x - y)\)[/tex] is a common factor (keeping track of the sign change):
[tex]\[ (2a - b)(x - y) \][/tex]

Thus, the factorized form is:
[tex]\[ 2ax + by - 2ay - bx = (2a - b)(x - y) \][/tex]

In conclusion, the factorized results for each expression are:

(a) [tex]\(2ax + 6ap + bx + 3bp = (2a + b)(3p + x)\)[/tex]

(b) [tex]\(xs - xk - ys + yk = (s - k)(x - y)\)[/tex]

(c) [tex]\(6ma - nb - 3na + 2mb = (3a + b)(2m - n)\)[/tex]

(d) [tex]\(2ax + by - 2ay - bx = (2a - b)(x - y)\)[/tex]