Use the Symmetry of a Function to Find Coordinates.

For the even function [tex]\( f \)[/tex]:

[tex]\[
a = \square
\][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 4 \\
\hline
0 & 5 \\
\hline
2 & [tex]$a$[/tex] \\
\hline
3 & 7 \\
\hline
\end{tabular}

For the odd function [tex]\( g \)[/tex]:

[tex]\[
b = \square
\][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
-2 & [tex]$b$[/tex] \\
\hline
0 & 0 \\
\hline
2 & -3 \\
\hline
3 & -4 \\
\hline
\end{tabular}



Answer :

To solve the problem, we need to use the properties of even and odd functions.

### Even Function: [tex]\( f(x) \)[/tex]
An even function, [tex]\( f(x) \)[/tex], satisfies the condition:
[tex]\[ f(x) = f(-x) \][/tex]

Given the values for [tex]\( f \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 4 \\ \hline 0 & 5 \\ \hline 2 & $a$ \\ \hline 3 & 7 \\ \hline \end{tabular} \][/tex]

To find [tex]\( a \)[/tex], we use the property:
[tex]\[ f(2) = f(-2) \][/tex]

From the table, [tex]\( f(-2) = 4 \)[/tex]. Therefore:
[tex]\[ f(2) = 4 \][/tex]
Hence:
[tex]\[ a = 4 \][/tex]

### Odd Function: [tex]\( g(x) \)[/tex]
An odd function, [tex]\( g(x) \)[/tex], satisfies the condition:
[tex]\[ g(x) = -g(-x) \][/tex]

Given the values for [tex]\( g \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $g(x)$ \\ \hline -2 & $b$ \\ \hline 0 & 0 \\ \hline 2 & -3 \\ \hline 3 & -4 \\ \hline \end{tabular} \][/tex]

To find [tex]\( b \)[/tex], we use the property:
[tex]\[ g(-2) = -g(2) \][/tex]

From the table, [tex]\( g(2) = -3 \)[/tex]. Therefore:
[tex]\[ g(-2) = -(-3) = 3 \][/tex]
Hence:
[tex]\[ b = 3 \][/tex]

### Summary of Results
- The value of [tex]\( a \)[/tex] is:
[tex]\[ a = 4 \][/tex]
- The value of [tex]\( b \)[/tex] is:
[tex]\[ b = 3 \][/tex]

Thus, the coordinates for the missing values have been determined as follows:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 3 \][/tex]