If [tex]\(1\)[/tex] is a zero of the polynomial [tex]\(ay + a y + 3\)[/tex] and [tex]\(y + a + b\)[/tex], then find the value of [tex]\(ab\)[/tex].

(Note: The original question contains some inconsistencies in the polynomial expression. Clarify the polynomial expressions for accurate problem-solving.)



Answer :

To solve the problem, we first need to understand what it means for 1 to be a zero of the polynomials [tex]\(ay^2 + ay + 3\)[/tex] and [tex]\(y + a + b\)[/tex].

### Step-by-Step Solution:

1. First Polynomial: [tex]\(ay^2 + ay + 3\)[/tex]
- Since 1 is a zero of the polynomial, substituting [tex]\(y = 1\)[/tex] should make the polynomial equal to zero.

[tex]\[ a(1)^2 + a(1) + 3 = 0 \][/tex]

Simplifying, we get:

[tex]\[ a + a + 3 = 0 \][/tex]

Combining like terms, we have:

[tex]\[ 2a + 3 = 0 \][/tex]

Solving for [tex]\(a\)[/tex], we subtract 3 from both sides:

[tex]\[ 2a = -3 \][/tex]

Then, divide by 2:

[tex]\[ a = -\frac{3}{2} \][/tex]

2. Second Polynomial: [tex]\(y + a + b\)[/tex]
- Again, since 1 is a zero of this polynomial, substituting [tex]\(y = 1\)[/tex] should make the polynomial equal to zero.

[tex]\[ 1 + a + b = 0 \][/tex]

We already determined that [tex]\(a = -\frac{3}{2}\)[/tex]. Substituting this value into the equation:

[tex]\[ 1 + \left(-\frac{3}{2}\right) + b = 0 \][/tex]

Simplifying inside the parentheses:

[tex]\[ 1 - \frac{3}{2} + b = 0 \][/tex]

Converting 1 to a fraction:

[tex]\[ \frac{2}{2} - \frac{3}{2} + b = 0 \][/tex]

Combining the fractions:

[tex]\[ \frac{2 - 3}{2} + b = 0 \][/tex]

Simplifying the fractions:

[tex]\[ -\frac{1}{2} + b = 0 \][/tex]

Solving for [tex]\(b\)[/tex], we add [tex]\( \frac{1}{2} \)[/tex] to both sides:

[tex]\[ b = \frac{1}{2} \][/tex]

3. Finding the Product [tex]\(ab\)[/tex]
- We now have [tex]\(a = -\frac{3}{2}\)[/tex] and [tex]\(b = \frac{1}{2}\)[/tex]. To find [tex]\(ab\)[/tex]:

[tex]\[ ab = \left( -\frac{3}{2} \right) \left( \frac{1}{2} \right) \][/tex]

Multiplying the fractions:

[tex]\[ ab = \frac{-3 \cdot 1}{2 \cdot 2} \][/tex]

Simplifying the numerator and the denominator:

[tex]\[ ab = \frac{-3}{4} \][/tex]

Thus, the value of [tex]\(ab\)[/tex] is:

[tex]\[ ab = -0.75 \][/tex]

So, the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( ab \)[/tex] are [tex]\(-1.5\)[/tex], [tex]\(0.5\)[/tex], and [tex]\(-0.75\)[/tex], respectively.