If [tex]f(x)=x+4[/tex] and [tex]g(x)=x^2-1[/tex], what is [tex](g \circ f)(x)[/tex]?

A. [tex](g \circ f)(x)=x^2-1[/tex]
B. [tex](g \circ f)(x)=x^2+8x+16[/tex]
C. [tex](g \circ f)(x)=x^2+8x+15[/tex]
D. [tex](g \circ f)(x)=x^2+3[/tex]



Answer :

To determine [tex]\((g \circ f)(x)\)[/tex], which means the composition of the functions [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex], we need to apply [tex]\(f(x)\)[/tex] first and then apply [tex]\(g(x)\)[/tex] to the result of [tex]\(f(x)\)[/tex]. The given functions are:

[tex]\[f(x) = x + 4\][/tex]
[tex]\[g(x) = x^2 - 1\][/tex]

Here are the steps to find [tex]\((g \circ f)(x)\)[/tex]:

1. Apply [tex]\(f(x)\)[/tex]:
[tex]\[f(x) = x + 4\][/tex]

2. Substitute [tex]\(f(x)\)[/tex] into [tex]\(g(x)\)[/tex]:
[tex]\[g(f(x)) = g(x + 4)\][/tex]

3. Evaluate [tex]\(g(x + 4)\)[/tex]:
[tex]\[g(x + 4) = (x + 4)^2 - 1\][/tex]

4. Expand [tex]\((x + 4)^2\)[/tex]:
[tex]\[ (x + 4)^2 = x^2 + 8x + 16 \][/tex]

5. Subtract 1 from the expanded result:
[tex]\[ (x + 4)^2 - 1 = x^2 + 8x + 16 - 1 = x^2 + 8x + 15 \][/tex]

Thus, the composition [tex]\((g \circ f)(x)\)[/tex] is:

[tex]\[ (g \circ f)(x) = x^2 + 8x + 15 \][/tex]

Therefore, the correct answer is:

[tex]\((g \circ f)(x) = x^2 + 8x + 15\)[/tex]