Answer :
To determine which of the given options is equivalent to [tex]\(\sin(30^\circ)\)[/tex], we will evaluate the trigonometric functions for the specific angles involved.
1. Evaluate [tex]\(\sin(30^\circ)\)[/tex]:
[tex]\[ \sin(30^\circ) = 0.49999999999999994 \][/tex]
2. Evaluate [tex]\(\cos(90^\circ)\)[/tex]:
[tex]\[ \cos(90^\circ) = 6.123233995736766 \times 10^{-17} \][/tex]
3. Evaluate [tex]\(\cos(30^\circ)\)[/tex]:
[tex]\[ \cos(30^\circ) = 0.8660254037844387 \][/tex]
4. Evaluate [tex]\(\sin(60^\circ)\)[/tex]:
[tex]\[ \sin(60^\circ) = 0.8660254037844386 \][/tex]
5. Evaluate [tex]\(\cos(60^\circ)\)[/tex]:
[tex]\[ \cos(60^\circ) = 0.5 \][/tex]
We see that:
- [tex]\(\cos(90^\circ) = 6.123233995736766 \times 10^{-17}\)[/tex], which is extremely close to 0.
- [tex]\(\cos(30^\circ) = 0.8660254037844387\)[/tex], which is not equal to [tex]\(\sin(30^\circ)\)[/tex].
- [tex]\(\sin(60^\circ) = 0.8660254037844386\)[/tex], which is not equal to [tex]\(\sin(30^\circ)\)[/tex].
- [tex]\(\cos(60^\circ) = 0.5\)[/tex], which is indeed very close to [tex]\(\sin(30^\circ)\)[/tex].
Therefore, the function that is equivalent to [tex]\(\sin(30^\circ)\)[/tex] is:
[tex]\[ \cos(60^\circ) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\text{D}} \][/tex]
1. Evaluate [tex]\(\sin(30^\circ)\)[/tex]:
[tex]\[ \sin(30^\circ) = 0.49999999999999994 \][/tex]
2. Evaluate [tex]\(\cos(90^\circ)\)[/tex]:
[tex]\[ \cos(90^\circ) = 6.123233995736766 \times 10^{-17} \][/tex]
3. Evaluate [tex]\(\cos(30^\circ)\)[/tex]:
[tex]\[ \cos(30^\circ) = 0.8660254037844387 \][/tex]
4. Evaluate [tex]\(\sin(60^\circ)\)[/tex]:
[tex]\[ \sin(60^\circ) = 0.8660254037844386 \][/tex]
5. Evaluate [tex]\(\cos(60^\circ)\)[/tex]:
[tex]\[ \cos(60^\circ) = 0.5 \][/tex]
We see that:
- [tex]\(\cos(90^\circ) = 6.123233995736766 \times 10^{-17}\)[/tex], which is extremely close to 0.
- [tex]\(\cos(30^\circ) = 0.8660254037844387\)[/tex], which is not equal to [tex]\(\sin(30^\circ)\)[/tex].
- [tex]\(\sin(60^\circ) = 0.8660254037844386\)[/tex], which is not equal to [tex]\(\sin(30^\circ)\)[/tex].
- [tex]\(\cos(60^\circ) = 0.5\)[/tex], which is indeed very close to [tex]\(\sin(30^\circ)\)[/tex].
Therefore, the function that is equivalent to [tex]\(\sin(30^\circ)\)[/tex] is:
[tex]\[ \cos(60^\circ) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\text{D}} \][/tex]