Select the correct answer.

Nancy is given a problem in her math class. In order to solve the problem, she must find the product of two numbers. The first number is [tex]\( 14 - x \)[/tex], and the second number is [tex]\( 19 + 7 \)[/tex] times the first number.

Which of the following functions represents the product of the two numbers?

A. [tex]\( p(x) = 7x^2 - 215x + 1,638 \)[/tex]
B. [tex]\( p(x) = 7x^2 - 98x + 819 \)[/tex]
C. [tex]\( p(x) = 7x^2 - 117x + 819 \)[/tex]
D. [tex]\( p(x) = 7x^2 - 117x + 686 \)[/tex]



Answer :

Let's break down the problem Nancy has been given:

1. First number: The problem states that the first number is [tex]\(14 - x\)[/tex].

2. Second number: The second number is described as being 19 more than 7 times the first number. This can be expressed mathematically as:
[tex]\[ 19 + 7 \cdot (14 - x) \][/tex]

3. To simplify the second number:
[tex]\[ 19 + 7(14 - x) = 19 + 98 - 7x = 117 - 7x \][/tex]

So, the second number is [tex]\(117 - 7x\)[/tex].

4. Product of the two numbers:
We need to find the product of the two numbers [tex]\(14 - x\)[/tex] and [tex]\(117 - 7x\)[/tex]:
[tex]\[ (14 - x)(117 - 7x) \][/tex]

5. Now, let's expand this product:

[tex]\[ (14 - x)(117 - 7x) = 14 \cdot 117 - 14 \cdot 7x - x \cdot 117 + x \cdot 7x \][/tex]

Breaking this down:

[tex]\[ 14 \cdot 117 = 1638 \][/tex]
[tex]\[ 14 \cdot 7x = 98x \][/tex]
[tex]\[ x \cdot 117 = 117x \][/tex]
[tex]\[ x \cdot 7x = 7x^2 \][/tex]

Putting it all together:
[tex]\[ (14 - x)(117 - 7x) = 1638 - 98x - 117x + 7x^2 \][/tex]

Combine like terms:
[tex]\[ (14 - x)(117 - 7x) = 7x^2 - 215x + 1638 \][/tex]

6. Therefore, the function that represents the product of the two numbers is:
[tex]\[ p(x) = 7x^2 - 215x + 1638 \][/tex]

Upon reviewing the given multiple-choice options, we see:
[tex]\[ \boxed{p(x) = 7x^2 - 215x + 1638} \][/tex]

So, the correct answer is:
[tex]\[ p(x)=7 x^2-215 x+1,638 \][/tex]