Add the rational expressions and simplify if possible.

[tex]\[
\frac{8w+6}{w-4} + \frac{3w+8}{w-4}
\][/tex]

[tex]\[
\frac{8w+6}{w-4} + \frac{3w+8}{w-4} = \square \quad \text{(Simplify your answer.)}
\][/tex]



Answer :

To add the rational expressions [tex]\(\frac{8w + 6}{w - 4}\)[/tex] and [tex]\(\frac{3w + 8}{w - 4}\)[/tex], follow these steps:

1. Ensure a Common Denominator:
Both expressions have the same denominator, [tex]\(w - 4\)[/tex]. Thus, we can directly add the numerators while keeping the common denominator.

2. Add the Numerators:
Combine the numerators [tex]\((8w + 6)\)[/tex] and [tex]\((3w + 8)\)[/tex]:
[tex]\[ \frac{8w + 6}{w - 4} + \frac{3w + 8}{w - 4} = \frac{(8w + 6) + (3w + 8)}{w - 4} \][/tex]

3. Combine Like Terms:
Add the like terms in the numerator:
[tex]\[ (8w + 3w) + (6 + 8) = 11w + 14 \][/tex]

4. Rewrite the Expression:
The combined numerator is [tex]\(11w + 14\)[/tex]. Therefore, we have:
[tex]\[ \frac{8w + 6}{w - 4} + \frac{3w + 8}{w - 4} = \frac{11w + 14}{w - 4} \][/tex]

So the simplified answer is:
[tex]\[ \frac{11w + 14}{w - 4} \][/tex]

Thus, the final simplified form of the given rational expressions is [tex]\(\frac{11w + 14}{w - 4}\)[/tex].