Subtract the rational expressions and simplify if possible.

[tex]\[ \frac{-3 x^2}{x-3} - \frac{9-4 x^2}{x-3} \][/tex]

[tex]\[ \frac{-3 x^2}{x-3} - \frac{9-4 x^2}{x-3} = \ \square \][/tex]

(Simplify your answer.)



Answer :

Let's subtract the rational expressions and simplify the result.

We start with the given expressions:
[tex]\[ \frac{-3 x^2}{x-3} - \frac{9-4x^2}{x-3} \][/tex]

1. Combine the expressions:

Since both fractions have the same denominator ([tex]\(x-3\)[/tex]), we can combine them by subtracting the numerators directly:
[tex]\[ \frac{-3 x^2}{x-3} - \frac{9-4x^2}{x-3} = \frac{-3 x^2 - (9-4x^2)}{x-3} \][/tex]

2. Distribute the subtraction across the numerator:

[tex]\[ \frac{-3 x^2 - 9 + 4 x^2}{x-3} \][/tex]

3. Combine like terms:

Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ \frac{(-3 x^2 + 4 x^2) - 9}{x-3} \][/tex]
[tex]\[ \frac{x^2 - 9}{x-3} \][/tex]

4. Factor the numerator:

Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored as [tex]\((x + 3)(x - 3)\)[/tex]:
[tex]\[ \frac{(x + 3)(x - 3)}{x-3} \][/tex]

5. Simplify the expression:

The [tex]\(x-3\)[/tex] terms cancel out:
[tex]\[ \frac{(x + 3)(x - 3)}{x-3} = x + 3 \][/tex]

Therefore, the simplified result is:
[tex]\[ \boxed{x + 3} \][/tex]