What is the 10th term of the geometric sequence [tex]$a(n) = -3(2)^{n-1}$[/tex]?

A. [tex]-1,536[/tex]
B. [tex]-10,077,696[/tex]
C. [tex]-54[/tex]
D. [tex]-3,072[/tex]



Answer :

To determine the 10th term of the geometric sequence given by the formula [tex]\( a(n) = -3 \cdot 2^{n-1} \)[/tex], let's follow the steps to find the value:

1. Identify the formula: [tex]\( a(n) = -3 \cdot 2^{n-1} \)[/tex].

2. Plug in [tex]\( n = 10 \)[/tex] into the formula:
[tex]\[ a(10) = -3 \cdot 2^{10-1} \][/tex]

3. Simplify the exponent:
[tex]\[ a(10) = -3 \cdot 2^9 \][/tex]

4. Evaluate [tex]\( 2^9 \)[/tex]. Here, [tex]\( 2^9 \)[/tex] equals 512:
[tex]\[ a(10) = -3 \cdot 512 \][/tex]

5. Multiply -3 by 512:
[tex]\[ -3 \cdot 512 = -1536 \][/tex]

Thus, the 10th term of the geometric sequence [tex]\( a(n) = -3 \cdot 2^{n-1} \)[/tex] is [tex]\( -1536 \)[/tex].

So, the correct answer is:
[tex]\[ -1536 \][/tex]