Point [tex]$R$[/tex] divides [tex]$\overline{PQ}$[/tex] in the ratio [tex]$1: 3$[/tex]. If the [tex]$x$[/tex]-coordinate of [tex]$R$[/tex] is -1 and the [tex]$x$[/tex]-coordinate of [tex]$P$[/tex] is -3, what is the [tex]$x$[/tex]-coordinate of [tex]$Q$[/tex]?

A. [tex]$-\frac{1}{3}$[/tex]
B. 3
C. 5
D. 6
E. -9



Answer :

To solve for the [tex]\(x\)[/tex]-coordinate of point [tex]\(Q\)[/tex], let's use the section formula. The section formula states that if a point [tex]\(R\)[/tex] divides a line segment [tex]\(\overline{PQ}\)[/tex] in the ratio [tex]\(m:n\)[/tex], and the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] are [tex]\((x_P, y_P)\)[/tex] and [tex]\((x_Q, y_Q)\)[/tex], respectively, then the coordinates of [tex]\(R\)[/tex] are given by:

[tex]\[ (x_R, y_R) = \left( \frac{mx_Q + nx_P}{m+n}, \frac{my_Q + ny_P}{m+n} \right) \][/tex]

In this problem, we are given:
- The ratio [tex]\(1 : 3\)[/tex], which means [tex]\(m=1\)[/tex] and [tex]\(n=3\)[/tex],
- The [tex]\(x\)[/tex]-coordinates only (no need to worry about [tex]\(y\)[/tex]-coordinates),
- The [tex]\(x\)[/tex]-coordinate of [tex]\(R\)[/tex] is [tex]\(-1\)[/tex],
- The [tex]\(x\)[/tex]-coordinate of [tex]\(P\)[/tex] is [tex]\(-3\)[/tex].

We need to find the [tex]\(x\)[/tex]-coordinate of [tex]\(Q\)[/tex], denoted as [tex]\(x_Q\)[/tex].

Using the section formula for the [tex]\(x\)[/tex]-coordinate, we have:

[tex]\[ x_R = \frac{m x_Q + n x_P}{m + n} \][/tex]

Substitute the values into the formula:

[tex]\[ -1 = \frac{1 \cdot x_Q + 3 \cdot (-3)}{1 + 3} \][/tex]

Simplify the expression:

[tex]\[ -1 = \frac{x_Q - 9}{4} \][/tex]

Multiply both sides of the equation by 4 to clear the denominator:

[tex]\[ -4 = x_Q - 9 \][/tex]

Solve for [tex]\(x_Q\)[/tex]:

[tex]\[ x_Q = -4 + 9 \][/tex]

[tex]\[ x_Q = 5 \][/tex]

Thus, the [tex]\(x\)[/tex]-coordinate of point [tex]\(Q\)[/tex] is [tex]\(5\)[/tex].

So, the correct answer is:
C. [tex]\(5\)[/tex]