The sun has a radius of about [tex]$695,000 \, \text{km}$[/tex]. What is the volume of the sun, in scientific notation? Use 3 decimal places in the mantissa [tex](M)[/tex].
[tex]\[ \square \, \text{km}^3 \][/tex]

The volume of the Earth is about [tex]$1.1 \times 10^{12} \, \text{km}^3$[/tex]. Assume the Earth is a perfect sphere. What is the radius of the Earth? Round to the nearest tenth of a kilometer.
[tex]\[ \square \, \text{km} \][/tex]

The Sun's radius is [tex]\square[/tex] times the Earth's radius. (Use at least 1 decimal place)

The Sun's volume is [tex]\square[/tex] times the Earth's volume.



Answer :

Let's break down the problem step by step:

### Step 1: Calculate the volume of the Sun

The formula to calculate the volume [tex]\( V \)[/tex] of a sphere is:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

Given:
- The radius of the Sun [tex]\( r_{\text{Sun}} = 695,000 \text{ km} \)[/tex]

Plugging in the values:

[tex]\[ V_{\text{Sun}} = \frac{4}{3} \pi (695,000)^3 \][/tex]

The volume of the Sun in scientific notation with 3 decimal places in the mantissa is:

[tex]\[ V_{\text{Sun}} = 1.406 \times 10^{18} \text{ km}^3 \][/tex]

### Step 2: Calculate the radius of the Earth

Given:
- The volume of the Earth [tex]\( V_{\text{Earth}} = 1.1 \times 10^{12} \text{ km}^3 \)[/tex]

The formula for the volume of a sphere is rearranged to solve for the radius [tex]\( r \)[/tex]:

[tex]\[ r = \left( \frac{3V}{4 \pi} \right)^{\frac{1}{3}} \][/tex]

Plugging in the values:

[tex]\[ r_{\text{Earth}} = \left( \frac{3 \times 1.1 \times 10^{12}}{4 \pi} \right)^{\frac{1}{3}} \][/tex]

The radius of the Earth is:

[tex]\[ r_{\text{Earth}} \approx 6403.8 \text{ km} \][/tex]

### Step 3: Calculate how many times the Sun's radius is larger than Earth's radius

[tex]\[ \text{Sun to Earth radius ratio} = \frac{r_{\text{Sun}}}{r_{\text{Earth}}} = \frac{695,000}{6403.8} \][/tex]

The Sun's radius is approximately:

[tex]\[ \text{Sun to Earth radius ratio} \approx 108.5 \][/tex]

### Step 4: Calculate how many times the Sun's volume is larger than Earth's volume

[tex]\[ \text{Sun to Earth volume ratio} = \frac{V_{\text{Sun}}}{V_{\text{Earth}}} = \frac{1.406 \times 10^{18}}{1.1 \times 10^{12}} \][/tex]

The Sun's volume is approximately:

[tex]\[ \text{Sun to Earth volume ratio} \approx 1,278,351.7 \][/tex]

### Final Answer
1. The volume of the Sun is:
[tex]\[ 1.406 \times 10^{18} \text{ km}^3 \][/tex]

2. The radius of the Earth is:
[tex]\[ 6403.8 \text{ km} \][/tex]

3. The Sun's radius is:
[tex]\[ 108.5 \text{ times the Earth's radius} \][/tex]

4. The Sun's volume is:
[tex]\[ 1,278,351.7 \text{ times the Earth's volume} \][/tex]