If a total force exerted by water in a container with a bottom area of 2 square meters is 450 newtons, what is the water pressure at the bottom of the container?

A. 0.300 kPa
B. 0.225 kPa
C. 0.900 kPa
D. 0.575 kPa



Answer :

To determine the water pressure at the bottom of the container, follow these steps:

1. Identify the desired information: Pressure at the bottom of the container.

2. Gather the given data:
- Force exerted by the water: [tex]\( F = 450 \)[/tex] newtons.
- Area of the bottom of the container: [tex]\( A = 2 \)[/tex] square meters.

3. Calculate the pressure using the formula for pressure:
[tex]\[ P = \frac{F}{A} \][/tex]
substituting the given values:
[tex]\[ P = \frac{450 \text{ newtons}}{2 \text{ square meters}} = 225 \text{ pascals} \][/tex]

4. Convert the pressure from pascals to kilopascals (kPa):
Recall that 1 pascal (Pa) is equal to 0.001 kilopascals (kPa). Therefore:
[tex]\[ P_{\text{kPa}} = 225 \text{ pascals} \times 0.001 = 0.225 \text{ kPa} \][/tex]

Thus, the water pressure at the bottom of the container is [tex]\( 0.225 \)[/tex] kPa. Therefore, the correct answer is:
B. 0.225 kPa