Answer :
To determine the water pressure at the bottom of the container, follow these steps:
1. Identify the desired information: Pressure at the bottom of the container.
2. Gather the given data:
- Force exerted by the water: [tex]\( F = 450 \)[/tex] newtons.
- Area of the bottom of the container: [tex]\( A = 2 \)[/tex] square meters.
3. Calculate the pressure using the formula for pressure:
[tex]\[ P = \frac{F}{A} \][/tex]
substituting the given values:
[tex]\[ P = \frac{450 \text{ newtons}}{2 \text{ square meters}} = 225 \text{ pascals} \][/tex]
4. Convert the pressure from pascals to kilopascals (kPa):
Recall that 1 pascal (Pa) is equal to 0.001 kilopascals (kPa). Therefore:
[tex]\[ P_{\text{kPa}} = 225 \text{ pascals} \times 0.001 = 0.225 \text{ kPa} \][/tex]
Thus, the water pressure at the bottom of the container is [tex]\( 0.225 \)[/tex] kPa. Therefore, the correct answer is:
B. 0.225 kPa
1. Identify the desired information: Pressure at the bottom of the container.
2. Gather the given data:
- Force exerted by the water: [tex]\( F = 450 \)[/tex] newtons.
- Area of the bottom of the container: [tex]\( A = 2 \)[/tex] square meters.
3. Calculate the pressure using the formula for pressure:
[tex]\[ P = \frac{F}{A} \][/tex]
substituting the given values:
[tex]\[ P = \frac{450 \text{ newtons}}{2 \text{ square meters}} = 225 \text{ pascals} \][/tex]
4. Convert the pressure from pascals to kilopascals (kPa):
Recall that 1 pascal (Pa) is equal to 0.001 kilopascals (kPa). Therefore:
[tex]\[ P_{\text{kPa}} = 225 \text{ pascals} \times 0.001 = 0.225 \text{ kPa} \][/tex]
Thus, the water pressure at the bottom of the container is [tex]\( 0.225 \)[/tex] kPa. Therefore, the correct answer is:
B. 0.225 kPa