Answer :
Sure, let's find the average rate of change of the function [tex]\( g(t) = -(t-1)^2 + 5 \)[/tex] over the interval [tex]\([-4, 5]\)[/tex].
### Step 1: Evaluate [tex]\( g(t) \)[/tex] at [tex]\( t = -4 \)[/tex]
We need to substitute [tex]\( t = -4 \)[/tex] into the function:
[tex]\[ g(-4) = -(-4 - 1)^2 + 5 \][/tex]
First, calculate [tex]\((-4 - 1)\)[/tex]:
[tex]\[ -4 - 1 = -5 \][/tex]
Then, square this result:
[tex]\[ (-5)^2 = 25 \][/tex]
Now, negate that result:
[tex]\[ -25 \][/tex]
Finally, add 5:
[tex]\[ -25 + 5 = -20 \][/tex]
So, [tex]\( g(-4) = -20 \)[/tex].
### Step 2: Evaluate [tex]\( g(t) \)[/tex] at [tex]\( t = 5 \)[/tex]
Next, substitute [tex]\( t = 5 \)[/tex] into the function:
[tex]\[ g(5) = -(5 - 1)^2 + 5 \][/tex]
First, calculate [tex]\(5 - 1\)[/tex]:
[tex]\[ 5 - 1 = 4 \][/tex]
Then, square this result:
[tex]\[ 4^2 = 16 \][/tex]
Now, negate that result:
[tex]\[ -16 \][/tex]
Finally, add 5:
[tex]\[ -16 + 5 = -11 \][/tex]
So, [tex]\( g(5) = -11 \)[/tex].
### Step 3: Calculate the Average Rate of Change
The average rate of change of the function over the interval [tex]\([-4, 5]\)[/tex] is given by the formula:
[tex]\[ \frac{g(t_2) - g(t_1)}{t_2 - t_1} \][/tex]
Substitute [tex]\(t_1 = -4\)[/tex] and [tex]\(t_2 = 5\)[/tex]:
[tex]\[ \frac{g(5) - g(-4)}{5 - (-4)} \][/tex]
We already found [tex]\(g(5) = -11\)[/tex] and [tex]\(g(-4) = -20\)[/tex]:
[tex]\[ \frac{-11 - (-20)}{5 - (-4)} \][/tex]
Simplify the numerator [tex]\(-11 - (-20)\)[/tex]:
[tex]\[ -11 + 20 = 9 \][/tex]
Simplify the denominator [tex]\(5 - (-4)\)[/tex]:
[tex]\[ 5 + 4 = 9 \][/tex]
Thus, the fraction becomes:
[tex]\[ \frac{9}{9} = 1 \][/tex]
So, the average rate of change of [tex]\( g(t) \)[/tex] over the interval [tex]\([-4, 5]\)[/tex] is [tex]\( 1.0 \)[/tex].
### Final Answer
[tex]\[ \boxed{1.0} \][/tex]
### Step 1: Evaluate [tex]\( g(t) \)[/tex] at [tex]\( t = -4 \)[/tex]
We need to substitute [tex]\( t = -4 \)[/tex] into the function:
[tex]\[ g(-4) = -(-4 - 1)^2 + 5 \][/tex]
First, calculate [tex]\((-4 - 1)\)[/tex]:
[tex]\[ -4 - 1 = -5 \][/tex]
Then, square this result:
[tex]\[ (-5)^2 = 25 \][/tex]
Now, negate that result:
[tex]\[ -25 \][/tex]
Finally, add 5:
[tex]\[ -25 + 5 = -20 \][/tex]
So, [tex]\( g(-4) = -20 \)[/tex].
### Step 2: Evaluate [tex]\( g(t) \)[/tex] at [tex]\( t = 5 \)[/tex]
Next, substitute [tex]\( t = 5 \)[/tex] into the function:
[tex]\[ g(5) = -(5 - 1)^2 + 5 \][/tex]
First, calculate [tex]\(5 - 1\)[/tex]:
[tex]\[ 5 - 1 = 4 \][/tex]
Then, square this result:
[tex]\[ 4^2 = 16 \][/tex]
Now, negate that result:
[tex]\[ -16 \][/tex]
Finally, add 5:
[tex]\[ -16 + 5 = -11 \][/tex]
So, [tex]\( g(5) = -11 \)[/tex].
### Step 3: Calculate the Average Rate of Change
The average rate of change of the function over the interval [tex]\([-4, 5]\)[/tex] is given by the formula:
[tex]\[ \frac{g(t_2) - g(t_1)}{t_2 - t_1} \][/tex]
Substitute [tex]\(t_1 = -4\)[/tex] and [tex]\(t_2 = 5\)[/tex]:
[tex]\[ \frac{g(5) - g(-4)}{5 - (-4)} \][/tex]
We already found [tex]\(g(5) = -11\)[/tex] and [tex]\(g(-4) = -20\)[/tex]:
[tex]\[ \frac{-11 - (-20)}{5 - (-4)} \][/tex]
Simplify the numerator [tex]\(-11 - (-20)\)[/tex]:
[tex]\[ -11 + 20 = 9 \][/tex]
Simplify the denominator [tex]\(5 - (-4)\)[/tex]:
[tex]\[ 5 + 4 = 9 \][/tex]
Thus, the fraction becomes:
[tex]\[ \frac{9}{9} = 1 \][/tex]
So, the average rate of change of [tex]\( g(t) \)[/tex] over the interval [tex]\([-4, 5]\)[/tex] is [tex]\( 1.0 \)[/tex].
### Final Answer
[tex]\[ \boxed{1.0} \][/tex]