Determine the equation of a circle with a center at [tex](8,10)[/tex] and a radius of 6.

1) [tex](x-8)^2+(y-10)^2=6[/tex]
2) [tex](x+8)^2+(y-10)^2=36[/tex]
3) [tex](x-8)^2+(y-10)^2=36[/tex]
4) [tex](x+8)^2+(y+10)^2=36[/tex]



Answer :

To determine the equation of a circle, we use the standard form of the equation of a circle, which is:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.

Given:
- The center of the circle is [tex]\((8, 10)\)[/tex], so [tex]\(h = 8\)[/tex] and [tex]\(k = 10\)[/tex].
- The radius of the circle is [tex]\(6\)[/tex], so [tex]\(r = 6\)[/tex].

Now, let's substitute these values into the standard form equation for a circle.

1. Substitute [tex]\(h = 8\)[/tex], [tex]\(k = 10\)[/tex], and [tex]\(r = 6\)[/tex] into the equation:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 6^2 \][/tex]

2. Simplify the radius squared:
[tex]\[ 6^2 = 36 \][/tex]

3. Therefore, the equation becomes:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 36 \][/tex]

So, the equation of the circle is:

[tex]\[ (x - 8)^2 + (y - 10)^2 = 36 \][/tex]

From the given options, this matches option 3:

[tex]\[ (x - 8)^2 + (y - 10)^2 = 36 \][/tex]

Thus, the correct choice is:

Choice 3.

Answer:

(x-8)^2+(y-10)^2=36

Step-by-step explanation:

The equation for a circle is given by

(x-h) ^2 + ( y-k) ^2 = r^2  where (h,k) is the center of the circle and r is the radius.

Given the center and (8,10) and a radius of 6:

(x-8) ^2 + ( y-10) ^2 = 6^2

(x-8) ^2 + ( y-10) ^2 = 36