16) For the following line, state the [tex]\( x \)[/tex]-intercept as an ordered pair and state the [tex]\( y \)[/tex]-intercept as an ordered pair (show work):

[tex]\[
5x - 12y = 80
\][/tex]

[tex]\( x \)[/tex]-intercept is [tex]\(\qquad\)[/tex]
[tex]\( y \)[/tex]-intercept is [tex]\(\qquad\)[/tex]



Answer :

To find the intercepts of the line given by the equation [tex]\( 5x - 12y = 80 \)[/tex], we'll follow these steps:

### Finding the [tex]\(x\)[/tex]-intercept

1. Set [tex]\( y = 0 \)[/tex]: The [tex]\(x\)[/tex]-intercept occurs where the line crosses the x-axis, which means that [tex]\( y = 0 \)[/tex].

2. Substitute [tex]\( y = 0 \)[/tex] into the equation:
[tex]\[ 5x - 12(0) = 80 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 5x = 80 \][/tex]
[tex]\[ x = \frac{80}{5} \][/tex]
[tex]\[ x = 16 \][/tex]

4. State the [tex]\( x\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (16, 0) \][/tex]

### Finding the [tex]\(y\)[/tex]-intercept

1. Set [tex]\( x = 0 \)[/tex]: The [tex]\(y\)[/tex]-intercept occurs where the line crosses the y-axis, which means that [tex]\( x = 0 \)[/tex].

2. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ 5(0) - 12y = 80 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
[tex]\[ -12y = 80 \][/tex]
[tex]\[ y = \frac{80}{-12} \][/tex]
[tex]\[ y = -\frac{80}{-12} \quad \text{(simplifying negative signs)} \][/tex]
[tex]\[ y \approx 6.67 \][/tex]

4. State the [tex]\( y\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (0, 6.67) \][/tex]


### Summary

- The [tex]\( x\)[/tex]-intercept is [tex]\((16, 0)\)[/tex].
- The [tex]\( y\)[/tex]-intercept is [tex]\((0, 6.67)\)[/tex].