Answer :
To find the intercepts of the line given by the equation [tex]\( 5x - 12y = 80 \)[/tex], we'll follow these steps:
### Finding the [tex]\(x\)[/tex]-intercept
1. Set [tex]\( y = 0 \)[/tex]: The [tex]\(x\)[/tex]-intercept occurs where the line crosses the x-axis, which means that [tex]\( y = 0 \)[/tex].
2. Substitute [tex]\( y = 0 \)[/tex] into the equation:
[tex]\[ 5x - 12(0) = 80 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 5x = 80 \][/tex]
[tex]\[ x = \frac{80}{5} \][/tex]
[tex]\[ x = 16 \][/tex]
4. State the [tex]\( x\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (16, 0) \][/tex]
### Finding the [tex]\(y\)[/tex]-intercept
1. Set [tex]\( x = 0 \)[/tex]: The [tex]\(y\)[/tex]-intercept occurs where the line crosses the y-axis, which means that [tex]\( x = 0 \)[/tex].
2. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ 5(0) - 12y = 80 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ -12y = 80 \][/tex]
[tex]\[ y = \frac{80}{-12} \][/tex]
[tex]\[ y = -\frac{80}{-12} \quad \text{(simplifying negative signs)} \][/tex]
[tex]\[ y \approx 6.67 \][/tex]
4. State the [tex]\( y\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (0, 6.67) \][/tex]
### Summary
- The [tex]\( x\)[/tex]-intercept is [tex]\((16, 0)\)[/tex].
- The [tex]\( y\)[/tex]-intercept is [tex]\((0, 6.67)\)[/tex].
### Finding the [tex]\(x\)[/tex]-intercept
1. Set [tex]\( y = 0 \)[/tex]: The [tex]\(x\)[/tex]-intercept occurs where the line crosses the x-axis, which means that [tex]\( y = 0 \)[/tex].
2. Substitute [tex]\( y = 0 \)[/tex] into the equation:
[tex]\[ 5x - 12(0) = 80 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 5x = 80 \][/tex]
[tex]\[ x = \frac{80}{5} \][/tex]
[tex]\[ x = 16 \][/tex]
4. State the [tex]\( x\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (16, 0) \][/tex]
### Finding the [tex]\(y\)[/tex]-intercept
1. Set [tex]\( x = 0 \)[/tex]: The [tex]\(y\)[/tex]-intercept occurs where the line crosses the y-axis, which means that [tex]\( x = 0 \)[/tex].
2. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ 5(0) - 12y = 80 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ -12y = 80 \][/tex]
[tex]\[ y = \frac{80}{-12} \][/tex]
[tex]\[ y = -\frac{80}{-12} \quad \text{(simplifying negative signs)} \][/tex]
[tex]\[ y \approx 6.67 \][/tex]
4. State the [tex]\( y\)[/tex]-intercept as an ordered pair:
[tex]\[ (x, y) = (0, 6.67) \][/tex]
### Summary
- The [tex]\( x\)[/tex]-intercept is [tex]\((16, 0)\)[/tex].
- The [tex]\( y\)[/tex]-intercept is [tex]\((0, 6.67)\)[/tex].