Answer :
To write [tex]\( 5.6 \times 10^{-6} \)[/tex] in ordinary notation, follow these steps:
1. Understand that [tex]\( 10^{-6} \)[/tex] represents moving the decimal point 6 places to the left. This is because the exponent is negative, indicating a small number.
2. Start with the number 5.6.
3. Move the decimal point 6 places to the left.
- Initially, the decimal point is right after the 5, making it [tex]\( 5.6 \)[/tex].
- Move it 1 place to the left: [tex]\( 0.56 \)[/tex].
- Move it 1 more place: [tex]\( 0.056 \)[/tex].
- Another place to the left: [tex]\( 0.0056 \)[/tex].
- Continue moving it: [tex]\( 0.00056 \)[/tex].
- Move it again: [tex]\( 0.000056 \)[/tex].
- Finally, move it one last time: [tex]\( 0.0000056 \)[/tex].
Therefore, [tex]\( 5.6 \times 10^{-6} \)[/tex] in ordinary notation is [tex]\( 0.0000056 \)[/tex].
1. Understand that [tex]\( 10^{-6} \)[/tex] represents moving the decimal point 6 places to the left. This is because the exponent is negative, indicating a small number.
2. Start with the number 5.6.
3. Move the decimal point 6 places to the left.
- Initially, the decimal point is right after the 5, making it [tex]\( 5.6 \)[/tex].
- Move it 1 place to the left: [tex]\( 0.56 \)[/tex].
- Move it 1 more place: [tex]\( 0.056 \)[/tex].
- Another place to the left: [tex]\( 0.0056 \)[/tex].
- Continue moving it: [tex]\( 0.00056 \)[/tex].
- Move it again: [tex]\( 0.000056 \)[/tex].
- Finally, move it one last time: [tex]\( 0.0000056 \)[/tex].
Therefore, [tex]\( 5.6 \times 10^{-6} \)[/tex] in ordinary notation is [tex]\( 0.0000056 \)[/tex].