What is the root-mean-square velocity of ammonia molecules (NH₃) at 45°C?

A. 466 m/s
B. 682 m/s
C. 67.8 m/s
D. 257 m/s
E. 21.6 m/s



Answer :

To find the root-mean-square (RMS) velocity of ammonia molecules (NH3) at 45°C, we follow these steps:

1. Determine the molecular mass of NH3:
The molecular mass of ammonia (NH3) is 17.031 g/mol.

2. Convert the molecular mass from grams per mole to kilograms per mole:
Since 1 kilogram equals 1000 grams, we divide by 1000:
[tex]\[ \text{Molecular mass in kg/mol} = \frac{17.031 \text{ g/mol}}{1000} = 0.017031 \text{ kg/mol} \][/tex]

3. Convert the temperature from Celsius to Kelvin:
To convert Celsius to Kelvin, we add 273.15 to the Celsius temperature:
[tex]\[ \text{Temperature in K} = 45^\circ \text{C} + 273.15 = 318.15 \text{ K} \][/tex]

4. Use the root-mean-square velocity formula:
The formula for root-mean-square velocity (vrms) is:
[tex]\[ v_{rms} = \sqrt{\frac{3RT}{M}} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant, 8.314 J/(mol·K)
- [tex]\( T \)[/tex] is the absolute temperature in Kelvin
- [tex]\( M \)[/tex] is the molar mass in kg/mol

5. Substitute the known values into the formula:
[tex]\[ v_{rms} = \sqrt{\frac{3 \times 8.314 \text{ J/(mol·K)} \times 318.15 \text{ K}}{0.017031 \text{ kg/mol}}} \][/tex]

6. Calculate the root-mean-square velocity:
Using the given calculations and constants, the root-mean-square velocity of ammonia molecules (NH3) at 45°C is approximately:
[tex]\[ v_{rms} \approx 682.6 \text{ m/s} \][/tex]

Given the answer choices, the closest to our calculated result is:
[tex]\[ 682 \text{ m/s} \][/tex]

So, the root-mean-square velocity of ammonia molecules (NH3) at 45°C is:
[tex]\[ \boxed{682 \text{ m/s}} \][/tex]