Answer :
Let's determine the probability distribution of the random variable [tex]\(X\)[/tex] by calculating the probabilities [tex]\(P(X=x)\)[/tex] for each unique value of [tex]\(X\)[/tex]. Given the outcome strings and their corresponding values of [tex]\(X\)[/tex], we need to find the unique values of [tex]\(X\)[/tex] and their associated probabilities.
First, identify the unique values, which are already given. These are: [tex]\(-5\)[/tex], [tex]\(-2\)[/tex], and [tex]\(-1\)[/tex].
Second, count the number of times each unique value appears to find the frequency. This will help us calculate the probabilities.
Here are the given outcomes and their corresponding values of [tex]\(X\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Outcome} & \text{Value of } X \\ \hline \text{oeo} & -2 \\ \text{eee} & -2 \\ \text{ooo} & -5 \\ \text{eoo} & -2 \\ \text{oee} & -1 \\ \text{eeo} & -1 \\ \text{ooe} & -2 \\ \text{eoe} & -1 \\ \hline \end{array} \][/tex]
Now, count the occurrences of each value:
- [tex]\(X = -5\)[/tex]: 1 occurrence
- [tex]\(X = -2\)[/tex]: 4 occurrences
- [tex]\(X = -1\)[/tex]: 3 occurrences
There are a total of [tex]\(8\)[/tex] outcomes. Therefore, the probabilities for each unique value are calculated by dividing the frequency of each value by the total number of outcomes.
Calculate the probabilities:
[tex]\[ P(X = -5) = \frac{1}{8} = 0.125 \][/tex]
[tex]\[ P(X = -2) = \frac{4}{8} = 0.5 \][/tex]
[tex]\[ P(X = -1) = \frac{3}{8} = 0.375 \][/tex]
Now, we can fill in the probability distribution table for [tex]\(X\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Value } x \text{ of } X & -5 & -2 & -1 \\ \hline P ( X = x ) & 0.125 & 0.5 & 0.375 \\ \hline \end{array} \][/tex]
First, identify the unique values, which are already given. These are: [tex]\(-5\)[/tex], [tex]\(-2\)[/tex], and [tex]\(-1\)[/tex].
Second, count the number of times each unique value appears to find the frequency. This will help us calculate the probabilities.
Here are the given outcomes and their corresponding values of [tex]\(X\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Outcome} & \text{Value of } X \\ \hline \text{oeo} & -2 \\ \text{eee} & -2 \\ \text{ooo} & -5 \\ \text{eoo} & -2 \\ \text{oee} & -1 \\ \text{eeo} & -1 \\ \text{ooe} & -2 \\ \text{eoe} & -1 \\ \hline \end{array} \][/tex]
Now, count the occurrences of each value:
- [tex]\(X = -5\)[/tex]: 1 occurrence
- [tex]\(X = -2\)[/tex]: 4 occurrences
- [tex]\(X = -1\)[/tex]: 3 occurrences
There are a total of [tex]\(8\)[/tex] outcomes. Therefore, the probabilities for each unique value are calculated by dividing the frequency of each value by the total number of outcomes.
Calculate the probabilities:
[tex]\[ P(X = -5) = \frac{1}{8} = 0.125 \][/tex]
[tex]\[ P(X = -2) = \frac{4}{8} = 0.5 \][/tex]
[tex]\[ P(X = -1) = \frac{3}{8} = 0.375 \][/tex]
Now, we can fill in the probability distribution table for [tex]\(X\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Value } x \text{ of } X & -5 & -2 & -1 \\ \hline P ( X = x ) & 0.125 & 0.5 & 0.375 \\ \hline \end{array} \][/tex]