Let's solve the given problem step-by-step.
We need to subtract the expression [tex]\((5x - 7)\)[/tex] from [tex]\((8x - 2)\)[/tex]. The expression to solve is:
[tex]\[
(8x - 2) - (5x - 7)
\][/tex]
First, distribute the negative sign to the terms inside the parentheses:
[tex]\[
8x - 2 - 5x + 7
\][/tex]
Next, combine like terms. Start with the terms that contain [tex]\(x\)[/tex]:
[tex]\[
8x - 5x = 3x
\][/tex]
Now combine the constant terms:
[tex]\[
-2 + 7 = 5
\][/tex]
Putting it all together, we get:
[tex]\[
3x + 5
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{3x + 5}
\][/tex]
So the answer corresponding to the given options is:
C. [tex]\(3x + 5\)[/tex]