Subtract [tex](8x - 2) - (5x - 7)[/tex].

A. [tex]3x - 5[/tex]
B. [tex]3x - 9[/tex]
C. [tex]3x + 5[/tex]
D. [tex]3x + 9[/tex]



Answer :

Let's solve the given problem step-by-step.

We need to subtract the expression [tex]\((5x - 7)\)[/tex] from [tex]\((8x - 2)\)[/tex]. The expression to solve is:

[tex]\[ (8x - 2) - (5x - 7) \][/tex]

First, distribute the negative sign to the terms inside the parentheses:

[tex]\[ 8x - 2 - 5x + 7 \][/tex]

Next, combine like terms. Start with the terms that contain [tex]\(x\)[/tex]:

[tex]\[ 8x - 5x = 3x \][/tex]

Now combine the constant terms:

[tex]\[ -2 + 7 = 5 \][/tex]

Putting it all together, we get:

[tex]\[ 3x + 5 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{3x + 5} \][/tex]

So the answer corresponding to the given options is:

C. [tex]\(3x + 5\)[/tex]