Which shows one way to determine the factors of [tex]$x^3 + 4x^2 + 5x + 20$[/tex] by grouping?

A. [tex]x(x^2 + 4) + 5(x^2 + 4)[/tex]
B. [tex]x^2(x + 4) + 5(x + 4)[/tex]
C. [tex]x^2(x + 5) + 4(x + 5)[/tex]
D. [tex]x(x^2 + 5) + 4x(x^2 + 5)[/tex]



Answer :

To determine the factors of the polynomial [tex]\( x^3 + 4x^2 + 5x + 20 \)[/tex] by grouping, we can follow these steps:

1. Group the terms in pairs:
We start by dividing the polynomial into two groups. Group the first two terms together and the last two terms together:
[tex]\[ (x^3 + 4x^2) + (5x + 20) \][/tex]

2. Factor out the common factor from each group:
- For the first group [tex]\( x^3 + 4x^2 \)[/tex], factor out [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x + 4) \][/tex]
- For the second group [tex]\( 5x + 20 \)[/tex], factor out [tex]\( 5 \)[/tex]:
[tex]\[ 5(x + 4) \][/tex]

3. Combine the factored groups:
Notice that both terms now contain a common binomial factor [tex]\( (x + 4) \)[/tex]. We can factor [tex]\( (x + 4) \)[/tex] out from both terms:
[tex]\[ x^2(x + 4) + 5(x + 4) \][/tex]

4. Rewrite the polynomial as a product of factors:
Now that we have factored out the common binomial, the polynomial [tex]\( x^3 + 4x^2 + 5x + 20 \)[/tex] can be written as:
[tex]\[ (x^2 + 5)(x + 4) \][/tex]

Therefore, the correct way to show the factors of [tex]\( x^3 + 4x^2 + 5x + 20 \)[/tex] by grouping is:
[tex]\[ x^2(x + 4) + 5(x + 4) \][/tex]

Thus, the correct option is:
[tex]\[ \boxed{x^2(x+4)+5(x+4)} \][/tex]