Type the correct answer in each box. Round your answers to two decimal places.

Subtract vector [tex]\(\mathbf{v} = \langle 2, -3 \rangle\)[/tex] from vector [tex]\(\mathbf{u} = \langle 5, 2 \rangle\)[/tex].

The magnitude of the resulting vector, [tex]\(\mathbf{u} - \mathbf{v}\)[/tex], is approximately [tex]\(\square\)[/tex], and its angle of direction is approximately [tex]\(\square\)[/tex].



Answer :

1. Subtract vector [tex]\( v = \langle 2, -3 \rangle \)[/tex] from vector [tex]\( u = \langle 5, 2 \rangle \)[/tex]:

[tex]\[ u - v = \langle 5, 2 \rangle - \langle 2, -3 \rangle \][/tex]
Subtract the corresponding components:

[tex]\[ u - v = \langle 5 - 2, 2 + 3 \rangle = \langle 3, 5 \rangle \][/tex]

2. Calculate the magnitude of the resulting vector [tex]\( \langle 3, 5 \rangle \)[/tex]:

The magnitude [tex]\( \|\langle 3, 5 \rangle\| \)[/tex] is found using the Pythagorean theorem:

[tex]\[ \|\langle 3, 5 \rangle\| = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \approx 5.83 \][/tex]

3. Calculate the angle of direction of the vector [tex]\( \langle 3, 5 \rangle \)[/tex]:

The angle of direction [tex]\( \theta \)[/tex] is found using the tangent function:

[tex]\[ \theta = \arctan\left(\frac{5}{3}\right) \][/tex]

To convert this angle from radians to degrees:

[tex]\[ \theta_{\text{degrees}} = \arctan\left(\frac{5}{3}\right) \times \frac{180}{\pi} \approx 59.04^\circ \][/tex]

Therefore, the magnitude of the resulting vector, [tex]\( \langle 3, 5 \rangle \)[/tex], is approximately 5.83, and its angle of direction is approximately 59.04 degrees.