Select the correct answer.

Which components are a possible representation of vector [tex]\( \mathbf{u} \)[/tex] if [tex]\( \|-4 \mathbf{u}\| \approx 14.42 \)[/tex]?

A. [tex]\( \langle 3, -2 \rangle \)[/tex]

B. [tex]\( \langle -1, 4 \rangle \)[/tex]

C. [tex]\( \langle 2, 2 \rangle \)[/tex]

D. [tex]\( \langle -2, -4 \rangle \)[/tex]



Answer :

To determine which components are a possible representation of vector [tex]\( u \)[/tex] given that [tex]\( \|-4u\| \approx 14.42 \)[/tex], let's work through the calculations step-by-step.

First, we need to understand the relationship given in the question:
[tex]\[ \|-4u\| \approx 14.42 \][/tex]
This means that the magnitude (or norm) of [tex]\(-4\)[/tex] times the vector [tex]\( u \)[/tex] is approximately 14.42.

The magnitude of a vector [tex]\( v = \)[/tex] is calculated using the formula:
[tex]\[ \|v\| = \sqrt{v_1^2 + v_2^2} \][/tex]

Given these choices, let's evaluate the magnitude for each vector option [tex]\( u \)[/tex]. Notice that scaling a vector by [tex]\(-4\)[/tex] affects its magnitude linearly:

[tex]\[ |-4| \cdot \|u\| = 4 \cdot \|u\| \][/tex]

Let's set this equal to the given approximation:

[tex]\[ 4 \cdot \|u\| = 14.42 \][/tex]

Solving for [tex]\(\|u\|\)[/tex]:

[tex]\[ \|u\| = \frac{14.42}{4} = 3.605 \][/tex]

Next, we need to check which of the provided vectors [tex]\( u \)[/tex] has a magnitude approximately equal to 3.605.

Option A: [tex]\( <3, -2> \)[/tex]
[tex]\[ \|<3, -2>\| = \sqrt{3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \approx 3.605 \][/tex]
This is a potential candidate as the magnitude is approximately 3.605.

Option B: [tex]\( <-1, 4> \)[/tex]
[tex]\[ \|<-1, 4>\| = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.123 \][/tex]
This magnitude is not approximately equal to 3.605.

Option C: [tex]\( <2, 2> \)[/tex]
[tex]\[ \|<2, 2>\| = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2.828 \][/tex]
This magnitude is not approximately equal to 3.605.

Option D: [tex]\( <-2, -4> \)[/tex]
[tex]\[ \|<-2, -4>\| = \sqrt{(-2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]
This magnitude is not approximately equal to 3.605.

After evaluating each option, the vector [tex]\( <3, -2> \)[/tex] is the correct choice because its magnitude matches our requirement:
[tex]\[ \|4u\| \approx 14.42 \implies u = <3, -2> \][/tex]

Thus, the correct answer is:
A. [tex]\( <3, -2> \)[/tex]