Evaluate the limit:

[tex]\[ \lim_{x \rightarrow \frac{-\pi}{4}} \frac{8 \sqrt{2}-(\cos x + \sin x)^7}{\sqrt{2}-\sqrt{2} \sin 2x} \][/tex]

The limit is equal to:

A. 14
B. 7
C. [tex]\(14 \sqrt{2}\)[/tex]
D. [tex]\(7 \sqrt{2}\)[/tex]



Answer :

To solve the limit [tex]\(\lim _{x \rightarrow \frac{-\pi}{4}} \frac{8 \sqrt{2}-(\cos x+\sin x)^7}{\sqrt{2}-\sqrt{2} \sin 2 x}\)[/tex], let's analyze the given expression step-by-step:

1. Expression Setup:
[tex]\[\lim_{x \to -\frac{\pi}{4}} \frac{8\sqrt{2} - (\cos x + \sin x)^7}{\sqrt{2} - \sqrt{2}\sin(2x)}\][/tex]

2. Substitute [tex]\( x = -\frac{\pi}{4} \)[/tex] where possible:

- Evaluate inside the trigonometric functions:
[tex]\[ \cos\left(-\frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]
Therefore,
[tex]\[ \cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = -\sqrt{2} \][/tex]

- Simplify the numerator:
[tex]\[ (\cos x + \sin x)^7 = (-\sqrt{2})^7 = -(\sqrt{2})^7 \][/tex]
Now,
[tex]\[ 8\sqrt{2} - (-(\sqrt{2})^7) = 8\sqrt{2} + (\sqrt{2})^7 = 8\sqrt{2} + 4\sqrt{2} \][/tex]
Simplifying,
[tex]\[ 8\sqrt{2} + 4\sqrt{2} = 12\sqrt{2} \][/tex]

- Evaluate [tex]\( \sin(2x) \)[/tex]:
[tex]\[ 2x = 2 \left(-\frac{\pi}{4}\right) = -\frac{\pi}{2} \][/tex]
[tex]\[ \sin\left(-\frac{\pi}{2}\right) = -1 \][/tex]
Therefore,
[tex]\[ \sqrt{2} - \sqrt{2}\sin(2x) = \sqrt{2} - \sqrt{2}(-1) = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \][/tex]

3. Form the limit expression with [tex]\( x = -\frac{\pi}{4} \)[/tex]:
[tex]\[ \frac{12\sqrt{2}}{2\sqrt{2}} = \frac{12}{2} = 6 \][/tex]

4. Verify consistency:
Both numerator and denominator properly simplify, indicating a straightforward limit process without indeterminate forms.

The final simplified value is:
[tex]\[ \boxed{4} \][/tex]