If [tex]\(a(x) = 3x + 1\)[/tex] and [tex]\(b(x) = \sqrt{x - 4}\)[/tex], what is the domain of [tex]\((b \circ a)(x)\)[/tex]?

A. [tex]\((-\infty, \infty)\)[/tex]
B. [tex]\([0, \infty)\)[/tex]
C. [tex]\([1, \infty)\)[/tex]
D. [tex]\([4, \infty)\)[/tex]



Answer :

To determine the domain of [tex]\((b \circ a)(x)\)[/tex], we first need to understand the behavior of the functions [tex]\(a(x)\)[/tex] and [tex]\(b(x)\)[/tex].

1. Define the Functions:
- [tex]\(a(x) = 3x + 1\)[/tex]
- [tex]\(b(x) = \sqrt{x - 4}\)[/tex]

2. Composite Function [tex]\((b \circ a)(x)\)[/tex]:
To find [tex]\((b \circ a)(x)\)[/tex], substitute [tex]\(a(x)\)[/tex] into [tex]\(b(x)\)[/tex]:
[tex]\[ (b \circ a)(x) = b(a(x)) = b(3x + 1) = \sqrt{3x + 1 - 4} \][/tex]
Simplifying inside the square root:
[tex]\[ (b \circ a)(x) = \sqrt{3x - 3} \][/tex]

3. Determine the Domain:
The expression inside the square root, [tex]\(3x - 3\)[/tex], must be non-negative for the square root to be defined (since the square root function only accepts non-negative arguments). Therefore, we need:
[tex]\[ 3x - 3 \geq 0 \][/tex]

4. Solve the Inequality:
Add 3 to both sides of the inequality:
[tex]\[ 3x \geq 3 \][/tex]
Divide both sides by 3:
[tex]\[ x \geq 1 \][/tex]

5. Conclusion:
The domain of the composite function [tex]\((b \circ a)(x)\)[/tex] is all [tex]\(x\)[/tex] such that [tex]\(x \geq 1\)[/tex].

So, the domain of [tex]\((b \circ a)(x)\)[/tex] is [tex]\([1, \infty)\)[/tex].

Answer: [tex]\([1, \infty)\)[/tex]