Select the correct answer.

Identify the normalized form of the mantissa in 111.01.

A. [tex]$1.1101 \times 2^2$[/tex]
B. [tex]$11.101 \times 2^1$[/tex]
C. [tex][tex]$0.11101 \times 2^3$[/tex][/tex]
D. [tex]$1110.1 \times 2^{-1}$[/tex]



Answer :

To solve the problem of identifying the normalized form of the mantissa in the binary number 111.01, we need to follow these steps:

1. Understand what normalization means: In binary, normalization refers to expressing the number in the form [tex]\( M \times 2^E \)[/tex] where [tex]\( M \)[/tex] (the mantissa) has exactly one non-zero digit to the left of the decimal point.

2. Convert 111.01 to normalized form:
- We start with 111.01 in binary.
- To normalize it, we shift the decimal point such that there is one non-zero digit to its left.
- By shifting the decimal point two positions to the left, we obtain [tex]\( 1.1101 \)[/tex]. This leaves us with:
[tex]\[ 1.1101 \times 2^2 \][/tex]
- Here, [tex]\( 1.1101 \)[/tex] is the mantissa and [tex]\( 2 \)[/tex] is the exponent, representing the shift of the decimal point.

3. Check against the given options:
- [tex]\( A. 1.1101 \times 2^2 \)[/tex]
- [tex]\( B. 11.101 \times 2^1 \)[/tex]
- [tex]\( C. 0.11101 \times 2^3 \)[/tex]
- [tex]\( D. 1110.1 \times 2^{-1} \)[/tex]

The normalization of 111.01 is [tex]\( 1.1101 \times 2^2 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{1} \][/tex]

The normalized form of the mantissa in 111.01 is [tex]\( 1.1101 \times 2^2 \)[/tex].