Solve the following system of equations:

[tex]\[ \begin{array}{l}
8p - 3a = 8 \\
2p + 9q = 15
\end{array} \][/tex]



Answer :

To solve the system of linear equations:

[tex]\[ \begin{cases} 8p - 3a = 8 \\ 2p + 9q = 15 \end{cases} \][/tex]

we need to find the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in terms of [tex]\( a \)[/tex]. Let's proceed step by step.

1. Solve the first equation for [tex]\( p \)[/tex]:

[tex]\[ 8p - 3a = 8 \][/tex]

Isolate [tex]\( p \)[/tex]:

[tex]\[ 8p = 3a + 8 \][/tex]

Divide both sides by 8:

[tex]\[ p = \frac{3a}{8} + 1 \][/tex]

2. Substitute [tex]\( p \)[/tex] into the second equation:

The second equation is:

[tex]\[ 2p + 9q = 15 \][/tex]

Substitute [tex]\( p = \frac{3a}{8} + 1 \)[/tex]:

[tex]\[ 2\left(\frac{3a}{8} + 1\right) + 9q = 15 \][/tex]

3. Simplify the equation:

Distribute the 2:

[tex]\[ 2 \cdot \frac{3a}{8} + 2 \cdot 1 + 9q = 15 \][/tex]

[tex]\[ \frac{6a}{8} + 2 + 9q = 15 \][/tex]

Simplify [tex]\(\frac{6a}{8}\)[/tex] to [tex]\(\frac{3a}{4}\)[/tex]:

[tex]\[ \frac{3a}{4} + 2 + 9q = 15 \][/tex]

4. Isolate [tex]\( q \)[/tex]:

Subtract 2 from both sides:

[tex]\[ \frac{3a}{4} + 9q = 13 \][/tex]

Subtract [tex]\(\frac{3a}{4}\)[/tex] from both sides:

[tex]\[ 9q = 13 - \frac{3a}{4} \][/tex]

Divide both sides by 9:

[tex]\[ q = \frac{13}{9} - \frac{3a}{36} \][/tex]

Simplify [tex]\(\frac{3a}{36}\)[/tex] to [tex]\(\frac{a}{12}\)[/tex]:

[tex]\[ q = \frac{13}{9} - \frac{a}{12} \][/tex]

Therefore, the solutions for [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in terms of [tex]\( a \)[/tex] are:

[tex]\[ p = \frac{3a}{8} + 1 \][/tex]

[tex]\[ q = \frac{13}{9} - \frac{a}{12} \][/tex]

These are the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] that satisfy the given system of linear equations.