2. A bullet is shot with a speed of [tex]$240 \, m/s$[/tex] at an angle of [tex]$25^{\circ}$[/tex] above the horizontal on a level surface.

a. Complete the following table:

[tex]\[
\begin{tabular}{|l|c|c|}
\hline
& Horizontal & Vertical \\
\hline
Initial Velocity & $226.5 \, m/s$ & $93.9 \, m/s$ \\
\hline
Acceleration & $0 \, m/s^2$ & $-9.8 \, m/s^2$ \\
\hline
\end{tabular}
\][/tex]

(show work here)

[tex]\[
\begin{array}{l}
240 \cdot \cos (25^{\circ}) = 226.5 \, m/s \\
240 \cdot \sin (25^{\circ}) = 93.9 \, m/s
\end{array}
\][/tex]

b. How long is the bullet in the air?

[tex]\[
8.2 \, s \left( \frac{2 \cdot 240 \cdot \sin (25^{\circ})}{9.8} \right)
\][/tex]

c. What is the maximum height achieved by the bullet?

[tex]\[
66.4 \, m \left( h = \frac{(240 \cdot \sin (25^{\circ}))^2}{2 \cdot 9.8} \right)
\][/tex]

d. How far away from the shooter does the bullet hit the ground?

[tex]\[
1840 \, m \left( d = 240 \cdot \cos (25^{\circ}) \cdot 8.2 \right)
\][/tex]



Answer :

Certainly! Let's go through each part of the question step-by-step and complete the required calculations.

---

### Part (a)
Complete the following table:

[tex]\[ \begin{array}{|l|c|c|} \hline & \text{horizontal} & \text{vertical} \\ \hline \text{initial velocity} & 217.51 \, \text{m/s} & 101.43 \, \text{m/s} \\ \hline \text{acceleration} & 0 \, \text{m/s}^2 & -9.8 \, \text{m/s}^2 \\ \hline \text{final velocity} & 217.51 \, \text{m/s} & -101.43 \, \text{m/s} \\ \hline \end{array} \][/tex]

#### Explanation:
- The initial horizontal velocity [tex]\(v_{0x}\)[/tex] is calculated using [tex]\( v_{0x} = 240 \cos(25^\circ) \)[/tex] which gives approximately [tex]\(217.51 \, \text{m/s}\)[/tex].
- The initial vertical velocity [tex]\(v_{0y}\)[/tex] is calculated using [tex]\( v_{0y} = 240 \sin(25^\circ) \)[/tex] which gives approximately [tex]\(101.43 \, \text{m/s}\)[/tex].
- The horizontal acceleration is [tex]\(0\, \text{m/s}^2\)[/tex] (since gravity only affects the vertical motion).
- The vertical acceleration is [tex]\( -9.8\, \text{m/s}^2\)[/tex] (due to gravity).

---

### Part (b)
How long is the bullet in the air?

The time of flight [tex]\( T \)[/tex] is given by:

[tex]\[ T = \frac{2 \cdot v_{0y}}{g} = \frac{2 \cdot 101.43}{9.8} \approx 20.70 \, \text{s} \][/tex]

---

### Part (c)
What is the maximum height achieved by the bullet?

The maximum height [tex]\(H\)[/tex] is given by:

[tex]\[ H = \frac{{v_{0y}}^2}{2g} = \frac{(101.43)^2}{2 \cdot 9.8} \approx 524.88 \, \text{m} \][/tex]

---

### Part (d)
How far away from the shooter does the bullet hit the ground?

The range [tex]\(R\)[/tex] is calculated using:

[tex]\[ R = v_{0x} \cdot T = 217.51 \cdot 20.70 \approx 4502.47 \, \text{m} \][/tex]

---

To summarize:
- The initial horizontal velocity is [tex]\(217.51 \, \text{m/s}\)[/tex] and vertical velocity is [tex]\(101.43 \, \text{m/s}\)[/tex].
- The time of flight is approximately [tex]\(20.70 \, \text{s}\)[/tex].
- The maximum height achieved is approximately [tex]\(524.88 \, \text{m}\)[/tex].
- The range is approximately [tex]\(4502.47 \, \text{m}\)[/tex].