Select the correct answer.

Solve the equation by completing the square.

[tex]\[ 0 = x^2 - 14x + 46 \][/tex]

A. [tex]\( x = -14 \pm \sqrt{3} \)[/tex]
B. [tex]\( x = -7 \pm \sqrt{3} \)[/tex]
C. [tex]\( x = 7 \pm \sqrt{3} \)[/tex]
D. [tex]\( x = 14 \pm \sqrt{3} \)[/tex]



Answer :

To solve the quadratic equation [tex]\( 0 = x^2 - 14x + 46 \)[/tex] by completing the square, follow these steps:

1. Start with the given equation:
[tex]\[ x^2 - 14x + 46 = 0 \][/tex]

2. Move the constant term to the other side:
[tex]\[ x^2 - 14x = -46 \][/tex]

3. Complete the square:
- To complete the square, add and subtract [tex]\((\frac{b}{2})^2\)[/tex] where [tex]\(b\)[/tex] is the coefficient of [tex]\(x\)[/tex]. In this case, [tex]\(b = -14\)[/tex].
- Calculate [tex]\((\frac{-14}{2})^2 = 49\)[/tex].

So, add and subtract 49 on the left side:
[tex]\[ x^2 - 14x + 49 - 49 = -46 \][/tex]

Which simplifies to:
[tex]\[ (x-7)^2 - 49 = -46 \][/tex]

4. Simplify the equation:
[tex]\[ (x - 7)^2 = 3 \][/tex]

5. Take the square root of both sides:
[tex]\[ x - 7 = \pm \sqrt{3} \][/tex]

6. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 7 \pm \sqrt{3} \][/tex]

Therefore, the solutions to the equation are:
[tex]\[ x = 7 + \sqrt{3} \quad \text{and} \quad x = 7 - \sqrt{3} \][/tex]

Given the answer choices:
A. [tex]\(z = -14 \pm \sqrt{3}\)[/tex]
B. [tex]\(a = -7 \pm \sqrt{3}\)[/tex]
C. [tex]\(x = 7 \pm \sqrt{3}\)[/tex]
D. [tex]\(a = 14 \pm \sqrt{3}\)[/tex]

The correct answer is:
C. [tex]\(x = 7 \pm \sqrt{3}\)[/tex]