Select the correct answer.

The parallelogram has an area of 20 square inches. What are the dimensions of the parallelogram, to the nearest hundredth of an inch?

Hint: Use the formula that uses trigonometry to find the area of any non-right triangle in order to solve this problem. [tex]A_{\text {triangle}} = \frac{1}{2} a b \sin (C)[/tex]

A. [tex]x = 3.06 \text{ in}, h = 6.54 \text{ in}[/tex]
B. [tex]x = 7.78 \text{ in}, h = 2.57 \text{ in}[/tex]
C. [tex]x = 4.00 \text{ in}, h = 5.00 \text{ in}[/tex]
D. [tex]x = 6.22 \text{ in}, h = 3.23 \text{ in}[/tex]



Answer :

To determine the correct dimensions of the parallelogram that has an area of 20 square inches, we will use the formula for the area of a parallelogram [tex]\( A = \text{base} \times \text{height} \)[/tex].

Let's go through each option one by one to check which combination of base and height gives us an area of 20 square inches.

### Option A: [tex]\( x = 3.06 \)[/tex] inches, [tex]\( h = 6.54 \)[/tex] inches
[tex]\[ A = 3.06 \times 6.54 \][/tex]
[tex]\[ A \approx 19.9944 \][/tex]

### Option B: [tex]\( x = 7.78 \)[/tex] inches, [tex]\( h = 2.57 \)[/tex] inches
[tex]\[ A = 7.78 \times 2.57 \][/tex]
[tex]\[ A \approx 19.9946 \][/tex]

### Option C: [tex]\( x = 4.00 \)[/tex] inches, [tex]\( h = 5.00 \)[/tex] inches
[tex]\[ A = 4.00 \times 5.00 \][/tex]
[tex]\[ A = 20.00 \][/tex]

### Option D: [tex]\( x = 6.22 \)[/tex] inches, [tex]\( h = 3.23 \)[/tex] inches
[tex]\[ A = 6.22 \times 3.23 \][/tex]
[tex]\[ A \approx 20.0606 \][/tex]

From our calculations, we see that:

- Option A gives an area approximately equal to 19.9944 square inches.
- Option B gives an area approximately equal to 19.9946 square inches.
- Option C gives an area exactly equal to 20.00 square inches.
- Option D gives an area approximately equal to 20.0606 square inches.

The option that results in exactly 20 square inches is Option C: [tex]\( x = 4.00 \)[/tex] inches, [tex]\( h = 5.00 \)[/tex] inches.

Thus, the correct dimensions of the parallelogram are [tex]\( x = 4.00 \)[/tex] inches and [tex]\( h = 5.00 \)[/tex] inches. The correct answer is Option C.