What is the slope of the line that contains the points [tex]\((2, -7)\)[/tex] and [tex]\((-1, 5)\)[/tex]?

A. [tex]\(-4\)[/tex]

B. [tex]\(-\frac{1}{4}\)[/tex]

C. [tex]\(\frac{1}{4}\)[/tex]

D. [tex]\(4\)[/tex]



Answer :

To determine the slope of the line that passes through the points [tex]\((2, -7)\)[/tex] and [tex]\((-1, 5)\)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1) = (2, -7)\)[/tex] and [tex]\((x_2, y_2) = (-1, 5)\)[/tex]. Plugging in the coordinates of the points, we get:

[tex]\[ m = \frac{5 - (-7)}{-1 - 2} \][/tex]

First, simplify the numerator:

[tex]\[ 5 - (-7) = 5 + 7 = 12 \][/tex]

Next, simplify the denominator:

[tex]\[ -1 - 2 = -3 \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m = \frac{12}{-3} = -4 \][/tex]

Therefore, the slope of the line that contains the points [tex]\((2, -7)\)[/tex] and [tex]\((-1, 5)\)[/tex] is [tex]\(-4\)[/tex].

So the correct answer is:
[tex]\[ -4 \][/tex]