Answer :
To determine the quadratic regression equation for the given data set, follow these steps:
1. Identify the data points:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 3 & 3.45 \\ \hline 5 & 6.9 \\ \hline 6 & 8.79 \\ \hline 8 & 12.91 \\ \hline 10 & 17.48 \\ \hline 12 & 22.49 \\ \hline 15 & 30.85 \\ \hline \end{tabular} \][/tex]
2. Understand the form of the quadratic equation:
We aim to fit a quadratic equation of the form:
[tex]\[ \hat{y} = ax^2 + bx + c \][/tex]
3. Coefficients from the quadratic regression:
The coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] obtained from the regression analysis are:
[tex]\[ \begin{align*} a &= 0.056 \\ b &= 1.278 \\ c &= -0.886 \end{align*} \][/tex]
4. Formulate the quadratic regression equation:
Substituting the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the equation:
[tex]\[ \hat{y} = 0.056x^2 + 1.278x - 0.886 \][/tex]
5. Identifying the correct equation:
Compare the formulated equation with the given options:
[tex]\[ \begin{align*} \hat{y} &= 0.056 x^2 - 1.278 x - 0.886 \\ \hat{y} &= 0.056 x^2 + 1.278 x - 0.886 \\ \hat{y} &= 0.056 x^2 + 1.278 x \\ \hat{y} &= 0.056 x^2 + 1.278 \end{align*} \][/tex]
The correct equation based on the coefficients is:
[tex]\[ \hat{y} = 0.056 x^2 + 1.278 x - 0.886 \][/tex]
Therefore, the quadratic regression equation for the given data set is:
[tex]\[ \hat{y} = 0.056 x^2 + 1.278 x - 0.886 \][/tex]
Thus, the correct option is:
[tex]\[ \boxed{\hat{y} = 0.056 x^2 + 1.278 x - 0.886} \][/tex]
1. Identify the data points:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 3 & 3.45 \\ \hline 5 & 6.9 \\ \hline 6 & 8.79 \\ \hline 8 & 12.91 \\ \hline 10 & 17.48 \\ \hline 12 & 22.49 \\ \hline 15 & 30.85 \\ \hline \end{tabular} \][/tex]
2. Understand the form of the quadratic equation:
We aim to fit a quadratic equation of the form:
[tex]\[ \hat{y} = ax^2 + bx + c \][/tex]
3. Coefficients from the quadratic regression:
The coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] obtained from the regression analysis are:
[tex]\[ \begin{align*} a &= 0.056 \\ b &= 1.278 \\ c &= -0.886 \end{align*} \][/tex]
4. Formulate the quadratic regression equation:
Substituting the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the equation:
[tex]\[ \hat{y} = 0.056x^2 + 1.278x - 0.886 \][/tex]
5. Identifying the correct equation:
Compare the formulated equation with the given options:
[tex]\[ \begin{align*} \hat{y} &= 0.056 x^2 - 1.278 x - 0.886 \\ \hat{y} &= 0.056 x^2 + 1.278 x - 0.886 \\ \hat{y} &= 0.056 x^2 + 1.278 x \\ \hat{y} &= 0.056 x^2 + 1.278 \end{align*} \][/tex]
The correct equation based on the coefficients is:
[tex]\[ \hat{y} = 0.056 x^2 + 1.278 x - 0.886 \][/tex]
Therefore, the quadratic regression equation for the given data set is:
[tex]\[ \hat{y} = 0.056 x^2 + 1.278 x - 0.886 \][/tex]
Thus, the correct option is:
[tex]\[ \boxed{\hat{y} = 0.056 x^2 + 1.278 x - 0.886} \][/tex]