Find the determinant of

[tex]\[ \left|\begin{array}{ccc} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{array}\right| \][/tex]

given that

[tex]\[ \left|\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right| = 7. \][/tex]



Answer :

Sure! Let's find the determinant of the matrix
[tex]\[ \begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix} \][/tex]
given that
[tex]\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7. \][/tex]

To start, let's note that the third row of the matrix [tex]\(\begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix}\)[/tex] has a common factor of 5 in each element. We can factor out the 5 from each element in the third row.

This gives us:
[tex]\[ \begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix} = 5 \cdot \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}. \][/tex]

Next, recognize that the remaining [tex]\( \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7 \)[/tex].

So, extracting the factor [tex]\(5\)[/tex] from each element in the third row again, multiplying by [tex]\(5\)[/tex] gives the overall multiplicative effect as [tex]\(5^3\)[/tex]:
[tex]\[ \begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix} = 5 \cdot 5 \cdot 5 \cdot \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}, \][/tex]

which simplifies to:
[tex]\[ 5^3 \cdot 7. \][/tex]

Now, calculating [tex]\(5^3\)[/tex] results in:
[tex]\[ 5^3 = 5 \times 5 \times 5 = 125. \][/tex]

Therefore:
[tex]\[ \begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix}= 125 \times 7 = 875. \][/tex]

Thus, the determinant of the matrix [tex]\(\begin{vmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{vmatrix}\)[/tex] is:
[tex]\[ \boxed{875}. \][/tex]