Solve the following equations:
[tex]\[
\begin{array}{l}
f(x) = \frac{x^2 + 3x + 2}{x + 8} \\
g(x) = \frac{x - 1}{x}
\end{array}
\][/tex]

Find the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation. Use the graph as a starting point.

Record the approximate value for the solution to the equation in the table below:
\begin{tabular}{|c|c|}
\hline
\textbf{Successive Approximation} & \textbf{Intersection Values} \\
\hline
[tex]$-\frac{63}{16}$[/tex] & [tex]$-\frac{31}{8}$[/tex] \\
\hline
[tex]$-\frac{61}{16}$[/tex] & [tex]$-\frac{15}{4}$[/tex] \\
\hline
[tex]$-\frac{59}{16}$[/tex] & [tex]$-\frac{29}{8}$[/tex] \\
\hline
\end{tabular}



Answer :

To find the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation, let's start by reviewing the functions provided:

1. [tex]\( f(x) = \frac{x^2 + 3x + 2}{x + 8} \)[/tex]
2. [tex]\( g(x) = \frac{(x - 1)}{x} \)[/tex]

Given the initial guess values from the table:

1. [tex]\(-\frac{63}{16}\)[/tex]
2. [tex]\(-\frac{61}{16}\)[/tex]
3. [tex]\(-\frac{59}{16}\)[/tex]

We'll perform iterative approximations for each step.

### Step-by-Step Solution:

#### Iteration 1

1. Initial Approximation: [tex]\( x = -\frac{63}{16} \)[/tex]
- Compute [tex]\( f(-\frac{63}{16}) \)[/tex]
- Compute [tex]\( g(-\frac{63}{16}) \)[/tex]
- Average these values to get intersection value.

2. Calculations:
[tex]\[ f\left( -\frac{63}{16} \right) = \frac{\left( -\frac{63}{16} \right)^2 + 3\left( -\frac{63}{16} \right) + 2}{\left( -\frac{63}{16} \right) + 8} \][/tex]

[tex]\[ g\left( -\frac{63}{16} \right) = \frac{\left( -\frac{63}{16} - 1\right)}{-\frac{63}{16}} \][/tex]

[tex]\[ \text{Intersection value} = \frac{f\left( -\frac{63}{16} \right) + g\left( -\frac{63}{16} \right)}{2} \][/tex]

After performing the calculations, we get:
[tex]\[ \text{Intersection value} \approx 1.327464896214896 \][/tex]

#### Iteration 2

1. Next Approximation: [tex]\( x = -\frac{61}{16} \)[/tex]
- Compute [tex]\( f(-\frac{61}{16}) \)[/tex]
- Compute [tex]\( g(-\frac{61}{16}) \)[/tex]
- Average these values to get intersection value.

2. Calculations:
[tex]\[ f\left( -\frac{61}{16} \right) = \frac{\left( -\frac{61}{16} \right)^2 + 3\left( -\frac{61}{16} \right) + 2}{\left( -\frac{61}{16} \right) + 8} \][/tex]

[tex]\[ g\left( -\frac{61}{16} \right) = \frac{\left( -\frac{61}{16} - 1\right)}{-\frac{61}{16}} \][/tex]

[tex]\[ \text{Intersection value} = \frac{f\left( -\frac{61}{16} \right) + g\left( -\frac{61}{16} \right)}{2} \][/tex]

After performing the calculations, we get:
[tex]\[ \text{Intersection value} \approx 1.2398229141179349 \][/tex]

#### Iteration 3

1. Next Approximation: [tex]\( x = -\frac{59}{16} \)[/tex]
- Compute [tex]\( f(-\frac{59}{16}) \)[/tex]
- Compute [tex]\( g(-\frac{59}{16}) \)[/tex]
- Average these values to get intersection value.

2. Calculations:
[tex]\[ f\left( -\frac{59}{16} \right) = \frac{\left( -\frac{59}{16} \right)^2 + 3\left( -\frac{59}{16} \right) + 2}{\left( -\frac{59}{16} \right) + 8} \][/tex]

[tex]\[ g\left( -\frac{59}{16} \right) = \frac{\left( -\frac{59}{16} - 1\right)}{-\frac{59}{16}} \][/tex]

[tex]\[ \text{Intersection value} = \frac{f\left( -\frac{59}{16} \right) + g\left( -\frac{59}{16} \right)}{2} \][/tex]

After performing the calculations, we get:
[tex]\[ \text{Intersection value} \approx 1.1614084377302873 \][/tex]

### Conclusion

After three iterations of successive approximation, the approximate values for the intersection of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are:

1. 1.327464896214896
2. 1.2398229141179349
3. 1.1614084377302873

These values provide a good approximation to the solution [tex]\( x \)[/tex] where [tex]\( f(x) = g(x) \)[/tex].