Select the correct location on the table.

Consider the following equations:

[tex]\[
\begin{array}{l}
f(x) = \frac{x^2 + 3x + 2}{x + 8} \\
g(x) = \frac{x - 1}{x}
\end{array}
\][/tex]

Approximate the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation. Use the graph as a starting point.

Select the approximate value for the solution to the equation in the table below.

[tex]\[
\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Successive \\
Approximation \\
Intersection Values
\end{tabular} \\
\hline
$-\frac{63}{16}$ & $-\frac{31}{8}$ \\
\hline
$-\frac{61}{16}$ & $-\frac{15}{4}$ \\
\hline
$-\frac{59}{16}$ & $-\frac{29}{8}$ \\
\hline
\end{tabular}
\][/tex]



Answer :

To approximate the solution to the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation, let's go step by step through the given iterations and see if we can match them with the values in the table.

1. Step 1: Initial Guess ([tex]\(x_0 = -\frac{63}{16}\)[/tex])

Calculate [tex]\( f(x_0) \)[/tex] and [tex]\( g(x_0) \)[/tex]:
[tex]\[ f \left( -\frac{63}{16} \right) \approx 1.40096 \][/tex]
[tex]\[ g \left( -\frac{63}{16} \right) \approx 1.25397 \][/tex]

Compute the difference:
[tex]\[ \left| f \left( -\frac{63}{16} \right) - g \left( -\frac{63}{16} \right) \right| \approx 0.147 \][/tex]

2. Step 2: Second Iteration ([tex]\( x_1 = -\frac{61}{16} \)[/tex])

Calculate [tex]\( f(x_1) \)[/tex] and [tex]\( g(x_1) \)[/tex]:
[tex]\[ f \left( -\frac{61}{16} \right) \approx 1.21735 \][/tex]
[tex]\[ g \left( -\frac{61}{16} \right) \approx 1.26230 \][/tex]

Compute the difference:
[tex]\[ \left| f \left( -\frac{61}{16} \right) - g \left( -\frac{61}{16} \right) \right| \approx 0.045 \][/tex]

3. Step 3: Third Iteration ([tex]\( x_2 = -\frac{59}{16} \)[/tex])

Calculate [tex]\( f(x_2) \)[/tex] and [tex]\( g(x_2) \)[/tex]:
[tex]\[ f \left( -\frac{59}{16} \right) \approx 1.05163 \][/tex]
[tex]\[ g \left( -\frac{59}{16} \right) \approx 1.27119 \][/tex]

Compute the difference:
[tex]\[ \left| f \left( -\frac{59}{16} \right) - g \left( -\frac{59}{16} \right) \right| \approx 0.220 \][/tex]

From these calculations, we can see that for the three iterations, the values used were [tex]\( x = -\frac{63}{16} \)[/tex], [tex]\( x = -\frac{61}{16} \)[/tex], and [tex]\( x = -\frac{59}{16} \)[/tex]. These values match the first column of the table provided. Therefore, the correct location on the table corresponding to the successive approximation iterations is:

- [tex]\( \begin{array}{|c|c|} \hline \text{Successive Approximation Intersection Values} \\ \hline -\frac{63}{16} & -\frac{31}{8} \\ \hline -\frac{61}{16} & -\frac{15}{4} \\ \hline -\frac{59}{16} & -\frac{29}{8} \\ \hline \end{array} \)[/tex]