Compute the determinant:

[tex]\[
\begin{vmatrix}
0 & 4 & 1 \\
5 & -3 & 0 \\
2 & 3 & 1
\end{vmatrix}
\][/tex]

A. 1

B. 0

C. 2

D. -1



Answer :

To find the determinant of the given 3x3 matrix, we follow the method for computing the determinant of a 3x3 matrix.

Given the matrix
[tex]\[ \begin{bmatrix} 0 & 4 & 1 \\ 5 & -3 & 0 \\ 2 & 3 & 1 \end{bmatrix} \][/tex]

We use the formula for the determinant of a 3x3 matrix:
[tex]\[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \][/tex]
where the matrix [tex]\( A \)[/tex] is:
[tex]\[ A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \][/tex]

For our matrix, we assign:
[tex]\[ a = 0, \quad b = 4, \quad c = 1, \quad d = 5, \quad e = -3, \quad f = 0, \quad g = 2, \quad h = 3, \quad i = 1 \][/tex]

Now substitute these values into the determinant formula:
[tex]\[ \det(A) = 0((-3 \cdot 1) - (0 \cdot 3)) - 4((5 \cdot 1) - (0 \cdot 2)) + 1((5 \cdot 3) - (-3 \cdot 2)) \][/tex]

Simplify each term separately:

First term:
[tex]\[ 0((-3 \cdot 1) - (0 \cdot 3)) = 0(-3) = 0 \][/tex]

Second term:
[tex]\[ -4((5 \cdot 1) - (0 \cdot 2)) = -4(5 - 0) = -4 \cdot 5 = -20 \][/tex]

Third term:
[tex]\[ 1((5 \cdot 3) - (-3 \cdot 2)) = 1(15 + 6) = 1 \cdot 21 = 21 \][/tex]

Combine them to get the determinant:
[tex]\[ \det(A) = 0 - 20 + 21 = 1 \][/tex]

Therefore, the determinant of the given matrix is [tex]\( \boxed{1} \)[/tex].