Answer :
Sure, let's break down each part step-by-step for a clear understanding.
### Part (f):
We need to evaluate the expression: [tex]\( 4 \times \left( 8 + 1 \right) \div 6 \)[/tex].
1. Calculate the sum inside the parentheses:
[tex]\[ 8 + 1 = 9 \][/tex]
2. Multiply the result by 4:
[tex]\[ 4 \times 9 = 36 \][/tex]
3. Divide the result by 6:
[tex]\[ 36 \div 6 = 6.0 \][/tex]
So, the final result for part (f) is [tex]\( 6.0 \)[/tex].
### Part (g):
We need to evaluate the expression: [tex]\( \frac{50}{2 \times \left(1 + \left(7 - 3\right) \right)} \)[/tex].
1. Calculate the difference inside the parentheses:
[tex]\[ 7 - 3 = 4 \][/tex]
2. Add 1 to the result:
[tex]\[ 4 + 1 = 5 \][/tex]
3. Multiply the result by 2:
[tex]\[ 2 \times 5 = 10 \][/tex]
4. Divide 50 by the result:
[tex]\[ \frac{50}{10} = 5.0 \][/tex]
So, the final result for part (g) is [tex]\( 5.0 \)[/tex].
### Summary:
- Part (f): The result of [tex]\( 4 \times (8 + 1) \div 6 \)[/tex] is [tex]\( 6.0 \)[/tex].
- Part (g): The result of [tex]\( \frac{50}{2 \times (1 + (7 - 3))} \)[/tex] is [tex]\( 5.0 \)[/tex].
### Part (f):
We need to evaluate the expression: [tex]\( 4 \times \left( 8 + 1 \right) \div 6 \)[/tex].
1. Calculate the sum inside the parentheses:
[tex]\[ 8 + 1 = 9 \][/tex]
2. Multiply the result by 4:
[tex]\[ 4 \times 9 = 36 \][/tex]
3. Divide the result by 6:
[tex]\[ 36 \div 6 = 6.0 \][/tex]
So, the final result for part (f) is [tex]\( 6.0 \)[/tex].
### Part (g):
We need to evaluate the expression: [tex]\( \frac{50}{2 \times \left(1 + \left(7 - 3\right) \right)} \)[/tex].
1. Calculate the difference inside the parentheses:
[tex]\[ 7 - 3 = 4 \][/tex]
2. Add 1 to the result:
[tex]\[ 4 + 1 = 5 \][/tex]
3. Multiply the result by 2:
[tex]\[ 2 \times 5 = 10 \][/tex]
4. Divide 50 by the result:
[tex]\[ \frac{50}{10} = 5.0 \][/tex]
So, the final result for part (g) is [tex]\( 5.0 \)[/tex].
### Summary:
- Part (f): The result of [tex]\( 4 \times (8 + 1) \div 6 \)[/tex] is [tex]\( 6.0 \)[/tex].
- Part (g): The result of [tex]\( \frac{50}{2 \times (1 + (7 - 3))} \)[/tex] is [tex]\( 5.0 \)[/tex].