f) 4 times the sum of 8 and 1 is divided by 6.

[tex]\[ 4(8+1) \div 6 \][/tex]

g) 50 is divided by 2 times one more than the difference of 7 and 3.

[tex]\[ \frac{50}{2 \times (1 + (7 - 3))} \][/tex]



Answer :

Sure, let's break down each part step-by-step for a clear understanding.

### Part (f):
We need to evaluate the expression: [tex]\( 4 \times \left( 8 + 1 \right) \div 6 \)[/tex].

1. Calculate the sum inside the parentheses:
[tex]\[ 8 + 1 = 9 \][/tex]

2. Multiply the result by 4:
[tex]\[ 4 \times 9 = 36 \][/tex]

3. Divide the result by 6:
[tex]\[ 36 \div 6 = 6.0 \][/tex]

So, the final result for part (f) is [tex]\( 6.0 \)[/tex].

### Part (g):
We need to evaluate the expression: [tex]\( \frac{50}{2 \times \left(1 + \left(7 - 3\right) \right)} \)[/tex].

1. Calculate the difference inside the parentheses:
[tex]\[ 7 - 3 = 4 \][/tex]

2. Add 1 to the result:
[tex]\[ 4 + 1 = 5 \][/tex]

3. Multiply the result by 2:
[tex]\[ 2 \times 5 = 10 \][/tex]

4. Divide 50 by the result:
[tex]\[ \frac{50}{10} = 5.0 \][/tex]

So, the final result for part (g) is [tex]\( 5.0 \)[/tex].

### Summary:

- Part (f): The result of [tex]\( 4 \times (8 + 1) \div 6 \)[/tex] is [tex]\( 6.0 \)[/tex].
- Part (g): The result of [tex]\( \frac{50}{2 \times (1 + (7 - 3))} \)[/tex] is [tex]\( 5.0 \)[/tex].