Solve the system of equations.

[tex]\[
\begin{array}{l}
5.6 x - 2.5 y + 1.6 z = 13.06 \\
3.5 x + 5.0 y - 0.1 z = -6.07 \\
2.1 x - 7.5 y + 3.2 z = 22.43
\end{array}
\][/tex]

Select the correct choice below, and if necessary, fill in any answer boxes to complete your choice.

A. There is one solution. The solution set is [tex]\(\{\square, \square, \square\}\)[/tex]. (Simplify your answers.)

B. The equations are dependent. The solution set is [tex]\(\{(x, y, z) \mid 3.5 x + 5.0 y - 0.1 z = -6.07\}\)[/tex].

C. The system is inconsistent. The solution set is [tex]\(\varnothing\)[/tex].



Answer :

To solve the given system of equations, we can use methods from linear algebra to find the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]. The given system of equations is:

[tex]\[ \begin{aligned} 5.6x - 2.5y + 1.6z &= 13.06 \\ 3.5x + 5.0y - 0.1z &= -6.07 \\ 2.1x - 7.5y + 3.2z &= 22.43 \end{aligned} \][/tex]

After solving this system of equations, the following values are obtained for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:

[tex]\[ x = 0.9 \][/tex]
[tex]\[ y = -1.8 \][/tex]
[tex]\[ z = 2.2 \][/tex]

Thus, the solution set is:
[tex]\[ \{ (0.9, -1.8, 2.2) \} \][/tex]

So, the correct choice is:
A. There is one solution. The solution set is [tex]\(\{(0.9, -1.8, 2.2)\}\)[/tex].