The equations of three lines are given below:

Line 1: [tex]5y = 3x + 6[/tex]
Line 2: [tex]y = \frac{3}{5}x - 5[/tex]
Line 3: [tex]10x - 6y = -8[/tex]

For each pair of lines, determine whether they are parallel, perpendicular, or neither.



Answer :

Sure, let's analyze each of the given lines and then determine their relationships—in terms of being parallel, perpendicular, or neither—step by step.

### Line 1
The equation for Line 1 is:
[tex]\[ 5y = 3x + 6 \][/tex]

First, let's turn this into slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = \frac{3}{5}x + \frac{6}{5} \][/tex]

The slope [tex]\( m_1 \)[/tex] for Line 1 is:
[tex]\[ m_1 = \frac{3}{5} \][/tex]

### Line 2
The equation for Line 2 is:
[tex]\[ y = \frac{3}{5}x - 5 \][/tex]

This is already in slope-intercept form [tex]\( y = mx + b \)[/tex].

The slope [tex]\( m_2 \)[/tex] for Line 2 is:
[tex]\[ m_2 = \frac{3}{5} \][/tex]

### Line 3
The equation for Line 3 is:
[tex]\[ 10x - 6y = -8 \][/tex]

First, let's convert this into slope-intercept form [tex]\( y = mx + b \)[/tex].

Starting by isolating [tex]\( y \)[/tex]:
[tex]\[ -6y = -10x - 8 \][/tex]

Divide everything by [tex]\(-6\)[/tex]:
[tex]\[ y = \frac{10}{6}x + \frac{8}{6} \][/tex]

Simplify the fractions:
[tex]\[ y = \frac{5}{3}x + \frac{4}{3} \][/tex]

The slope [tex]\( m_3 \)[/tex] for Line 3 is:
[tex]\[ m_3 = \frac{5}{3} \][/tex]

### Comparing the Slopes of the Lines

1. Line 1 and Line 2:
- Slope of Line 1: [tex]\( m_1 = \frac{3}{5} \)[/tex]
- Slope of Line 2: [tex]\( m_2 = \frac{3}{5} \)[/tex]

Since [tex]\( m_1 = m_2 \)[/tex], Line 1 and Line 2 are parallel.

2. Line 1 and Line 3:
- Slope of Line 1: [tex]\( m_1 = \frac{3}{5} \)[/tex]
- Slope of Line 3: [tex]\( m_3 = \frac{5}{3} \)[/tex]

To check if the lines are perpendicular, we check the product of their slopes:
[tex]\[ m_1 \cdot m_3 = \frac{3}{5} \cdot \frac{5}{3} = 1 \neq -1 \][/tex]

Since [tex]\( m_1 \neq m_3 \)[/tex] and [tex]\( m_1 \cdot m_3 \neq -1 \)[/tex], Line 1 and Line 3 are neither parallel nor perpendicular.

3. Line 2 and Line 3:
- Slope of Line 2: [tex]\( m_2 = \frac{3}{5} \)[/tex]
- Slope of Line 3: [tex]\( m_3 = \frac{5}{3} \)[/tex]

To check again if the lines are perpendicular:
[tex]\[ m_2 \cdot m_3 = \frac{3}{5} \cdot \frac{5}{3} = 1 \neq -1 \][/tex]

Since [tex]\( m_2 \neq m_3 \)[/tex] and [tex]\( m_2 \cdot m_3 \neq -1 \)[/tex], Line 2 and Line 3 are neither parallel nor perpendicular.

### Conclusion

- Line 1 and Line 2 are parallel.
- Line 1 and Line 3 are neither parallel nor perpendicular.
- Line 2 and Line 3 are neither parallel nor perpendicular.