Answer :
Let's address each part of the question one by one.
### Part 1: Doubling the Pressure by Changing Temperature
Consider an ideal gas with an initial absolute temperature [tex]\( T_1 \)[/tex]. According to the Ideal Gas Law, which states [tex]\( PV = nRT \)[/tex]:
1. Initial scenario:
- Pressure [tex]\( P_1 \)[/tex]
- Volume [tex]\( V \)[/tex]
- Temperature [tex]\( T_1 \)[/tex]
So, we have:
[tex]\[ P_1 V = nRT_1 \][/tex]
2. When we want to double the pressure:
- New Pressure [tex]\( 2P_1 \)[/tex]
- Volume [tex]\( V \)[/tex] (unchanged)
- New Temperature [tex]\( T_2 \)[/tex]
According to the Ideal Gas Law:
[tex]\[ 2P_1 V = nRT_2 \][/tex]
3. Relating the two equations:
[tex]\[ \frac{2P_1 V}{P_1 V} = \frac{nRT_2}{nRT_1} \][/tex]
Simplifying, we get:
[tex]\[ 2 = \frac{T_2}{T_1} \][/tex]
Therefore:
[tex]\[ T_2 = 2T_1 \][/tex]
### Part 2: Doubling the Pressure by Changing Volume
Consider an ideal gas with an initial volume [tex]\( V_1 \)[/tex]. According to the Ideal Gas Law, which states [tex]\( PV = nRT \)[/tex]:
1. Initial scenario:
- Pressure [tex]\( P_1 \)[/tex]
- Volume [tex]\( V_1 \)[/tex]
- Temperature [tex]\( T \)[/tex] (unchanged)
So, we have:
[tex]\[ P_1 V_1 = nRT \][/tex]
2. When we want to double the pressure:
- New Pressure [tex]\( 2P_1 \)[/tex]
- New Volume [tex]\( V_2 \)[/tex]
- Temperature [tex]\( T \)[/tex] (unchanged)
According to the Ideal Gas Law:
[tex]\[ 2P_1 V_2 = nRT \][/tex]
3. Relating the two equations:
[tex]\[ \frac{2P_1 V_2}{P_1 V_1} = \frac{nRT}{nRT} \][/tex]
Simplifying, we get:
[tex]\[ 2V_2 = V_1 \][/tex]
Therefore:
[tex]\[ V_2 = \frac{V_1}{2} \][/tex]
### Final Answers
Based on the above steps:
[tex]\[ T_2 = 2T_1 \][/tex]
[tex]\[ V_2 = \frac{V_1}{2} \][/tex]
### Part 1: Doubling the Pressure by Changing Temperature
Consider an ideal gas with an initial absolute temperature [tex]\( T_1 \)[/tex]. According to the Ideal Gas Law, which states [tex]\( PV = nRT \)[/tex]:
1. Initial scenario:
- Pressure [tex]\( P_1 \)[/tex]
- Volume [tex]\( V \)[/tex]
- Temperature [tex]\( T_1 \)[/tex]
So, we have:
[tex]\[ P_1 V = nRT_1 \][/tex]
2. When we want to double the pressure:
- New Pressure [tex]\( 2P_1 \)[/tex]
- Volume [tex]\( V \)[/tex] (unchanged)
- New Temperature [tex]\( T_2 \)[/tex]
According to the Ideal Gas Law:
[tex]\[ 2P_1 V = nRT_2 \][/tex]
3. Relating the two equations:
[tex]\[ \frac{2P_1 V}{P_1 V} = \frac{nRT_2}{nRT_1} \][/tex]
Simplifying, we get:
[tex]\[ 2 = \frac{T_2}{T_1} \][/tex]
Therefore:
[tex]\[ T_2 = 2T_1 \][/tex]
### Part 2: Doubling the Pressure by Changing Volume
Consider an ideal gas with an initial volume [tex]\( V_1 \)[/tex]. According to the Ideal Gas Law, which states [tex]\( PV = nRT \)[/tex]:
1. Initial scenario:
- Pressure [tex]\( P_1 \)[/tex]
- Volume [tex]\( V_1 \)[/tex]
- Temperature [tex]\( T \)[/tex] (unchanged)
So, we have:
[tex]\[ P_1 V_1 = nRT \][/tex]
2. When we want to double the pressure:
- New Pressure [tex]\( 2P_1 \)[/tex]
- New Volume [tex]\( V_2 \)[/tex]
- Temperature [tex]\( T \)[/tex] (unchanged)
According to the Ideal Gas Law:
[tex]\[ 2P_1 V_2 = nRT \][/tex]
3. Relating the two equations:
[tex]\[ \frac{2P_1 V_2}{P_1 V_1} = \frac{nRT}{nRT} \][/tex]
Simplifying, we get:
[tex]\[ 2V_2 = V_1 \][/tex]
Therefore:
[tex]\[ V_2 = \frac{V_1}{2} \][/tex]
### Final Answers
Based on the above steps:
[tex]\[ T_2 = 2T_1 \][/tex]
[tex]\[ V_2 = \frac{V_1}{2} \][/tex]